Cho tam giác ABC có BC = 2BA . BD là phân giác của tam giác ABC . Chứng minh DC = 2DA
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho tam giác ABC có BC = 2BA . BD là phân giác của tam giác ABC . Chứng minh DC = 2DA
Cho tam giác ABC , BC = 2BA . BD là tia phân giác của tam giác ABC . Chứng minh DC = 2DA
Bài tập 6: Cho tam giác ABC có BC = 2BA. BD là đường phân giác. Chứng minh : CD = 2DA.
Gọi đường tròn (O) đi qua ba điểm A, B, C. Đường phân giác của cắt cung nhỏ AC tại E. Xét hai tam giác ABE và DBC, chúng có: (gt), (hai góc nội tiếp cùng chắn cung AB).
Vậy ∆ ABE ~ ∆ DBC => =
=> AB.BC = BD.BE = (BD + DE).BD = BD2 + DE.BD
=> BD2 = AB.BC - DE.BD (1)
Dễ dàng có ∆ DBC ~ ∆ DAE => = => DE.BD = AD.DC (2).
Thay (2) vài (1) ta có điều phải chứng minh.
Từ A dựng đường thẳng //với BC cắt BD kéo dài tại E
\(\Rightarrow\widehat{E_1}=\widehat{B_2}\) (góc so le trong)
Mà \(\widehat{B_1}=\widehat{B_2}\)
\(\Rightarrow\widehat{B_1}=\widehat{E_1}\) => tg ABE cân tại A => BA=AE (1)
Áp dụng hệ quả định lý ta let đối với tam giác ta có
\(\frac{CD}{DA}=\frac{BC}{AE}\) (2)
Từ (1) và (2) \(\Rightarrow\frac{CD}{DA}=\frac{BC}{BA}=\frac{2BA}{BA}=2\Rightarrow CD=2DA\)
Cho tg ABC có BC = 2BA. Tia phân giác BD. CMR DC = 2DA
Cho \(\Delta ABC\)có \(BC=2BA\). \(BD\)là đường phân giác của \(\Delta ABC\). Chứng minh \(DC=2DA\)
Cho tam giác ABC có BC = 2BA . BD là phân giác của tam giác ABC . Chứng minh DC = 2DA
cho tam giác ABC vuông tại A có AB<AC, kẻ đường phân giác BD của ABC( D thuộc AC). Kẻ DM vuông góc với BC tại M
a) Chứng minh tam giác DAB= tam giác DMB
b) Chứng minh DK=Dc và AD<DC
a: Xét ΔBAD vuông tại A và ΔBMD vuông tại M có
BD chung
góc ABD=góc MBD
=>ΔBAD=ΔBMD
b: AD=DM
DM<DC
=>AD<DC
Cho tam giác ABC có BC=2BA.M là trung điểm của BC và BD là đường phân giác của tam giác ABC.2 tia BA và MD cắt nhau tại E. A) Chứng minh tam giác=tam giác BDM b)cm tam giác BAC=tam giác BME c)nêu vai trò của điểm D trong tam giác BCE và so sánh DC và DA
a: Xét ΔBAD và ΔBMD có
BA=BM(=BC/2)
góc ABD=góc MBD
BD chung
=>ΔBAD=ΔBMD
b: ΔBAD=ΔBMD
=>góc BAD=góc BMD và BA=BM
Xét ΔBME và ΔBAC có
góc BME=góc BAC
BM=BA
góc MBE chung
=>ΔBME=ΔBAC
c: ΔBME=ΔBAC
=>BE=BC
=>BE=2BA
=>A là trung điểm của BE
Xét ΔBEC có
CA,EM là trung tuyến
CA cắt EM tại D
=>D là trọng tâm
=>CD=2DA
Bài 2: Cho tam giác ABC có góc a = 90độ và BC = 2AB, E là trung điểm của BC. Tia phân giác của góc B cắt cạnh AC ở D. a . Chứng minh DB là tia phân giác của góc ADE; b . Chứng minh BD = DC ; c . Tính góc B và góc C của tam giác ABC.
cho tam giác ABC có AB < BC. trên tia BA lấy điểm D sao cho BC = BD. Tia phân giác B cắt AC ở E. Gọi K là trung điểm của DC
a) chứng minh tam giác BED = tam giác BEC
b) chứng minh EK vuông góc với DC
c) kẻ AH vuông góc với DC, ( H thuộc DC ). tam giác ABC cần thêm điều kiện gì để góc DAH = 45 độ
a: Xét ΔBDE và ΔBCE có
BD=BC
\(\widehat{DBE}=\widehat{CBE}\)
BE chung
Do đó: ΔBDE=ΔBCE
b: Ta có: ΔBDE=ΔBCE
=>ED=EC
=>E nằm trên đường trung trực của DC(1)
Ta có: BD=BC
=>B nằm trên đường trung trực của CD(2)
Ta có: KD=KC
=>K nằm trên đường trung trực của CD(3)
Từ (1),(2),(3) suy ra B,E,K thẳng hàng
=>B,E,K cùng nằm trên đường trung trực của DC
=>EK\(\perp\)DC
c: ΔAHD vuông tại H có \(\widehat{DAH}=45^0\)
nên ΔAHD vuông cân tại H
Xét ΔBDC có BD=BC
nên ΔBCD cân tại B
mà \(\widehat{BDC}=45^0\)
nên ΔBCD vuông cân tại B
=>\(\widehat{ABC}=90^0\)