Phân tích đa thức sau thành nhân tử:
a) x^2-7x-30
b) x^2-x-6
c) x^2+x-30
Phân tích đa thức thành nhân tử a) x^2 -5x+6 b) 3x^2+9x -30 c)3x^2 -5x-2 d) x^3-7x-6 e) x^4+2x^2+6x-9 f) x^2-7xy+10y^2
phân tích đa thức thành nhân tử( tách một hạng tử thành nhiều hạng tử)
a) x2-5x+6
b) 3x2+9x-30
c) x2-7x+12
d) x2-7x+10
a) \(x^2-5x+6=x^2-2x-3x+6=\left(x-2\right)\left(x-3\right)\)
b)\(3x^2+9x-30=3x^2-6x+15x-30=3\left(x-2\right)\left(x+5\right)\)
c)\(x^2-7x+12=x^2-3x-4x+12=\left(x-3\right)\left(x-4\right)\)
d)\(x^2-7x+10=x^2-2x-5x+10=\left(x-2\right)\left(x-5\right)\)
a) \(x^2-5x+6=x^2-2x-3x+6=\left(x^2-2x\right)-\left(3x-6\right)\)
\(=x\left(x-2\right)-3\left(x-2\right)=\left(x-2\right)\left(x-3\right)\)
b) \(3x^2+9x-30=3\left(x^2+3x-10\right)=3\left(x^2-2x+5x-10\right)\)
\(=3\left[\left(x^2-2x\right)+\left(5x-10\right)\right]=3\left[x\left(x-2\right)+5\left(x-2\right)\right]\)
\(=3\left(x-2\right)\left(x+5\right)\)
c) \(x^2-7x+12=x^2-3x-4x+12=\left(x^2-3x\right)-\left(4x-12\right)\)
\(=x\left(x-3\right)-4\left(x-3\right)=\left(x-3\right)\left(x-4\right)\)
d) \(x^2-7x+10=x^2-2x-5x+10=\left(x^2-2x\right)-\left(5x-10\right)\)
\(=x\left(x-2\right)-5\left(x-2\right)=\left(x-2\right)\left(x-5\right)\)
a,\(x^2-5x+6=x^2-2x-3x+6 =x(x-2)-3(x-2) =(x-2)(x-3)\)
b,\(3x^2+9x-30=3x^2+15x-6x-30=3x(x+5)-6(x+5)=(x+5)(3x-6)\)
c,\(x^2-7x+12=x^2-4x-3x+12=x(x-4)-3(x-4)=(x-4)(x-3)\)
d,\(x^2-7x+10=x^2-2x-5x+10=x(x-2)-5(x-2)=(x-2)(x-5)\)
Hok tốt !!!!!!!!!!
Phân tích đa thức thành nhân tử
a, x^3 - 8x^2 +x + 42
b, x^4 + 5x^3 - 7x^2 - 41x - 30
Bài tập : Phân tích đa thức thành nhân tử
a, x^3-7x+6
b, x^3-9x^2+6x+16
c, x^3-6x^2-x+30
d, 2x^3-x^2+5x+3
a) x3 - 7x + 6
= x3 - 2x2 + 2x2 - 4x - 3x + 6
= x2 ( x - 2 ) + 2x ( x - 2 ) - 3 ( x - 2 )
= ( x - 2 ) ( x2 + 2x - 3 )
= ( x - 2 ) ( x2 - x + 3x - 3 )
= ( x - 2 ) [ x ( x - 1 ) + 3 ( x - 1 ) ]
= ( x - 2 ) ( x - 1 ) ( x + 3 )
b ) x3 - 9x2 + 6x + 16
= x3 - 8x2 - x2 + 8x - 2x + 16
= x2 ( x - 8 ) - x ( x - 8 ) - 2 ( x - 8 )
= ( x - 8 ) ( x2 - x - 2 )
= ( x - 8 ) ( x2 + x - 2x - 2 )
= ( x - 8 ) [ x ( x + 1 ) - 2 ( x + 1 ) ]
= ( x - 8 ) ( x + 1 ) ( x - 2 )
c ) x3 - 6x2 - x + 30
= x3 - 5x2 - x2 + 5x - 6x + 30
= x2 ( x - 5 ) - x ( x - 5 ) - 6 ( x - 5 )
= ( x - 5 ) ( x2 - x - 6 )
= ( x - 5 ) ( x2 - 3x + 2x - 6 )
= ( x - 5 ) [ x ( x - 3 ) + 2 ( x - 3 ) ]
= ( x - 5 ) ( x - 3 ) ( x + 2 )
d ) 2x3 - x2 + 5x + 3
= 2x3 + x2 - 2x2 - x + 6x + 3
= x2 ( 2x + 1 ) - x ( 2x + 1 ) + 3 ( 2x + 1 )
= ( 2x + 1 ) ( x2 - x + 3 )
\(x^2+7x-30=0\)
Phân tích đa thức thành nhân tử
\(\Leftrightarrow x^2+10x-3x-30=0\\ \Leftrightarrow x\left(x+10\right)-3\left(x+10\right)=0\\ \Leftrightarrow\left(x+10\right)\left(x-3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-10\\x=3\end{matrix}\right.\)
Phân tích đa thức sau thành nhân tử: \(x^4-14x^2-7x+30\)
\(x^4-14x^2-7x+30=\left(x^4+x^3-3x^2\right)+\left(-x^3-x^2+3x\right)+\left(-10x^2-10x+30\right)\)
\(=x^2\left(x^2+x-3\right)-x\left(x^2+x-3\right)-10\left(x^2+x-3\right)\)
\(=\left(x^2+x-3\right)\left(x^2-x-10\right)\)
x^4-14*x^2-7*x+30=(x^2-x-10)*(x^2+x-3)
Giúp mình với nà !?! Phân tích đa thức thành nhân tử :
a) a^4 + a^2 -2
b) x^4 + 4x^2 -5
c) x^3 - 19x -30
d) x^3 -7x -6
e) x^3 - 5x^2 -14x
~ Thank you ~
a) a4 + a2 - 2
a4 + 2a2 - a2 - 2
a2.( a2 + 2 ) - ( a2 + 2 )
( a2 - 1 ).( a2 + 2 )
( a + 1 ).( a - 1 ).( a2 +2 )
b) x4 + 4x2 - 5
x4 + 5x2 - x2 - 5
x2.( x2 + 5 ) - ( x2 + 5 )
( x2 - 1 ).( x2 + 5 )
( x + 1 ).( x - 1 ).( x2 + 5 )
c) x3 - 19x - 30
x3 + 2x2 - 2x2 + 4x - 15x - 30
x2( x + 2 ) - 2x.( x + 2 ) - 15.( x + 2 )
( x + 2 ).( x2 - 2x - 15 )
d) x3 - 7x - 6
x3 - 3x2 + 3x2 - 9x + 2x - 6
x2.( x - 3 ) + 3x.( x - 3 ) + 2.( x - 3 )
( x - 3 ).( x2 + 3x +2 )
( x - 3 ).( x2 + 2x + x + 2 )
( x - 3 ).( x.( x + 2 ) + ( x + 2 )
( x + 1 ).( x + 2 ).( x - 3 )
e) x3 - 5x2 - 14x
x3 - 7x2 + 2x2 - 14x
x2.( x - 7 ) + 2x.( x - 7 )
( x - 7 ).( x2 + 2x )
x.( x + 2 ).( x - 7 )
Phân tích các đa thức sau thành nhân tử:
a)x2-x-6
b)x3-19x-30
\(x^2-x-6=x^2+2x-3x-6=x\left(x+2\right)-3\left(x+2\right)=\left(x-3\right)\left(x+2\right)\)
\(x^3-19x-30=x^3+6x-25x-30=x\left(x^2-25\right)+6x-30=x\left(x^2-25\right)+6\left(x-5\right)\)
\(=x\left(x-5\right)\left(x+5\right)+6\left(x-5\right)=\left(x-5\right)\left[\left(x\right)\left(x+5\right)+6\right]\)
BT1: Phân tích đa thức thành nhân tử bằng phương pháp hạng tử. a, x^2 - 5x + 6 b, 3x^2 + 9x - 30 c, x^2 - 3x + 2 d, 3x^2 - 5x -2
\(a,x^2-5x+6\\=x^2-3x-2x+6\\=x(x-3)-2(x-3)\\=(x-3)(x-2)\\---\\b,3x^2+9x-30\\=3x^2-6x+15x-30\\=3x(x-2)+15(x-2)\\=(x-2)(3x+15)\\=3(x-2)(x+5)\\---\)
\(c,x^2-3x+2\\=x^2-x-2x+2\\=x(x-1)-2(x-1)\\=(x-1)(x-2)\\---\\d,3x^2-5x-2\\=3x^2-6x+x-2\\=3x(x-2)+(x-2)\\=(x-2)(3x+1)\\Toru\)
Phân tích đa thức thành nhân tử :
a . \(x^3-7x-6\)
b . \(x^3-19x-30\)
c . \(a^3-6a^2+11a-6\)
a ) \(x^3-7x-6=x^3-x-6x-6=x^3-x-6\left(x+1\right)\)
\(=x\left(x^2-1\right)-6\left(x+1\right)=\left(x+1\right)\left[x\left(x-1\right)-6\right]\)
\(=\left(x+1\right)\left[\left(x^2-x-6\right)\right]=\left(x+1\right)\left[\left(x^2+2x-3x-6\right)\right]\)
\(=\left(x+1\right)\left[x\left(x+2\right)-3\left(x+2\right)\right]=\left(x+1\right)\left(x+2\right)\left(x+3\right)\)
b )
\(x^3-19x-30=\left(x^3-9x\right)-\left(10x+30\right)=x\left(x^2-9\right)-10\left(x+3\right)\)
\(=\left(x+3\right)\left(x^2-3x-10\right)=\left(x+2\right)\left(x+3\right)\left(x-5\right)\)
c )
\(a^3-6a^2+11a-6=\left(a-3\right)\left(a-2\right)\left(a-1\right).\)