Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Le trong hieu
Xem chi tiết
Trần Lan Anh
Xem chi tiết
Nguyễn Văn Quyến
18 tháng 12 2017 lúc 12:14

Ta có: 8^5 + 2^11 = ( 2^3 )^5 + 2^11 = 2^15 + 2^11 = 2^11 * 2^4 + 2^11 * 1 = 2^11 * ( 16 + 1 ) = 2^11 * 17 chia hết cho 17

=> 8^5 + 2^11 chia hết cho 17

69^2 - 69 * 5 = 69 * 69 - 69 * 5 = 69 * ( 69 - 5 ) = 69 * 64 = 69 * 2 * 32 = 138 * 32 chia hết cho 32

=> 69^2 - 69 * 5 chia hết cho 32

8^7 - 2^18 = ( 2^3 )^7 - 2^18 = 2^21 - 2^18 = 2^18 * 2^3 - 2^18 * 1 = 2^18 * ( 8 - 1 ) = 2^17 * 2 * 7 = 2^17 * 14 chia hết cho 14

=> 8^7 - 2^18 chia hết cho 14

Nguyễn Vũ Quỳnh Chi
Xem chi tiết
Nguyễn Vũ Quỳnh Chi
1 tháng 11 2017 lúc 19:52

trả lời giúp mk với

Vũ Mạnh Hùng
20 tháng 11 2017 lúc 20:47

a bằng 14

b bằng 26

c bằng 15

Thái Bình Nguyễn
26 tháng 11 2017 lúc 10:12

a) 85+211=23.5+211=211(24+1)=211.17 chia hết cho 17

hà thảo vi
Xem chi tiết
Anh Đỗ Ngọc
12 tháng 12 2020 lúc 16:25

8 mũ 5 + 2 mũ 11 = 2 mũ 3 tất cả mũ 5 + 2 mũ 11

                             = 2 mũ 15 + 2 mũ 11

                             = 2 mũ 11(2 mũ 4 + 1)

                             = 2 mũ 11 * 17

Khách vãng lai đã xóa
Vũ Ngọc Ánh
Xem chi tiết
Nguyễn Thanh Huyền
Xem chi tiết
Lưu Hiền
26 tháng 2 2017 lúc 21:57

a, 85 + 211 = (23)5 + 211 = 215 + 211 = 211 (24 + 1) = 211 . 17

=> đpcm

b, 692 - 69 . 5 = 69 (69 - 5) = 69 . 64 = 69 . 32 . 2

=> đpcm

c, 87 - 218 luôn chia hết cho 2 (1)

87 - 218 = 221 - 218 = 218 (23 - 1) = 218 . 7

=> 218 . 7 chia hết cho 7 (2)

có 1 và 2, 2 và 7 nguyên tố cùng nhau

=> đpcm

chúc may mắn

nglan
Xem chi tiết
nglan
17 tháng 12 2021 lúc 21:09

Các bạn giúp mình nhé

Nguyễn Lê Phước Thịnh
18 tháng 12 2021 lúc 0:21

\(S=\left(1+3\right)+...+3^8\left(1+3\right)=4\left(1+...+3^8\right)⋮4\)

Hồng Hoàng
Xem chi tiết
Nguyễn Lê Phước Thịnh
19 tháng 12 2021 lúc 11:51

\(S=\left(1+3+3^2\right)+...+3^7\left(1+3+3^2\right)\)

\(=13\left(1+...+3^7\right)⋮13\)

Minh Quang 6a Đỗ
Xem chi tiết
Kudo Shinichi
23 tháng 12 2021 lúc 18:36

\(S=1+3+3^2+3^3+3^4+3^5+3^6+3^7+3^8+3^9\)

\(S=\left(1+3\right)+\left(3^2+3^3\right)+\left(3^4+3^5\right)+\left(3^6+3^7\right)+\left(3^8+3^9\right)\)

\(S=4+3^2\left(1+3\right)+3^4\left(1+3\right)+3^6\left(1+3\right)+3^8\left(1+3\right)\)

\(S=4+3^2.4+3^4.4+3^6.4+3^8.4\)

\(S=4\left(3^2+3^4+3^6+3^8\right)\)

\(4⋮4\\ \Rightarrow4\left(3^2+3^4+3^6+3^8\right)⋮4\\ \Rightarrow S⋮4\)