Cho tam giác ABC cân tại A và ^BAC=36 độ. Tính AB/BC.
P/s: giải theo lớp 8 nha =))
Cho tam giác ABC cân tại A có góc A = 36 độ . Tính AB / BC
Mink sẽ tic-k ( xin các bạn nếu giải đc thì hãy giải theo kiểu của lớp 8 đừng có giải kiểu cos, sin ji đó mink ko hiểu ji hết ~~~thanks ~~~)
Ai k cho mình đi!!!!!!!!!!!!!!!!!!!!!!!!!!Thank you very much
cho tam giác ABC cân tại A. \(\widehat{BAC}\)=120\(^0\), AB=a. tính độ dài cạnh BC theo a
\(\dfrac{BC}{sinA}=\dfrac{AB}{sinC}\)
=>BC/sin120=a/sin30=2a
=>BC=a*căn 3
Cho tam giác ABC cân tại A (góc A nhọn). Vẽ đường phân giác của góc BAC cắt BC tại H:
a) Chứng minh HB=HC VÀ AH vuông góc BC.
b) Với AB=30 cm, BC= 36 cm.Tính độ dài AH.
c) Vể đường trung tuyến BM của tam giác ABC cắt AH tại G.Tính độ dài AG và BM.
Cho tam giác cân ABC cân tại A. Tia phân giác của góc BAC cắt cạnh BC
tại M.
1) Chứng minh tam giác AMB = tam giác AMC.
2) a- Biết góc BAC = 500. Tính góc ABC và góc ACB.
b- Biết BC = 6 cm; AM = 4 cm. Tính độ dài AB, AC?
3) Kẻ ME vuông góc AB tại E, MF vuông góc AC tại F. Chứng minh tam giác AEF cân.
4) Kẻ EI vuông góc BC tại I. Gọi K là giao của đường thẳng EI và đường thẳng AC. Chứng
minh A là trung điểm của đoạn KF.
1: Xét ΔAMB và ΔAMC có
AB=AC
\(\widehat{BAM}=\widehat{CAM}\)
AM chung
Do đó:ΔAMB=ΔAMC
2:
a: \(\widehat{ABC}=\widehat{ACB}=\dfrac{180^0-50^0}{2}=65^0\)
b: BC=6cm nên BM=3cm
=>AB=AC=5cm
3: Xét ΔAEM vuông tại E và ΔAFM vuông tại F có
AM chung
\(\widehat{EAM}=\widehat{FAM}\)
Do đó: ΔAEM=ΔAFM
Suy ra: AE=AF
hay ΔAEF cân tại A
cho tam giac ABC cân tại A có góc BAC = 36 độ.trên tia đối của tia CB lấy điểm D sao cho CD=AC.kẻ AH vuông góc với BC tại H đặt AB=AC=x;BC=2y.
a)c/m :tam giác ABC đồng dạng với DBA và x^2 =2y(x+2y)
b)từ đó tính x và AH theo y
c)tinh tỉ số lượng giác của góc 18 độ và góc 72 độ
Cho tam giác ABC cân tại A có BAC=45o,AB=a . Tính BC theo a
Kẻ đường cao sau đó dùng ht giữa cạnh và góc là ra
Kẻ đường cao AH ta có: góc BAH = góc CAH = 22 độ 30 phút.
\(BC=BH+CH=2a.\sin22^030'=a.\frac{2-\sqrt{2}}{2}\)
Xét ΔABC có \(cosA=\dfrac{AB^2+AC^2-BC^2}{2\cdot AB\cdot AC}\)
=>\(cos35=\dfrac{8^2+8^2-BC^2}{2\cdot8\cdot8}\)
=>\(128-BC^2=2\cdot64\cdot cos35=128\cdot cos35\)
=>\(BC=\sqrt{128-128\cdot cos35}\simeq4,81\left(cm\right)\)
Xét ΔADC có \(\dfrac{CD}{sinCAD}=\dfrac{AC}{sinADC}\)
=>\(\dfrac{8}{sinADC}=\dfrac{6}{sin43}\)
=>\(sinADC=8\cdot\dfrac{sin43}{6}\simeq0,91\)
=>\(\widehat{ADC}\simeq65^0\)
cho tam giác ABC cân tại A.Trên tia đối của tia BC lấy điểm D sao cho AB=BD.Trên tia đối của tia CB lấy điểm E sao cho AC=CE
a)chứng minh tam giác ABC cân tại và DE=AB+AC+BC
b)tính các góc của tam giác ADE biết góc BAC=32 độ
Bài 1: Cho tam giác ABC cân tại A. BH là đường vuông góc hạ từ B đến AC. Chứng minh rằng BAC = 2CBH ( BAC và CBH là góc nha)
Bài 2: Cho tam giác ABC cân tại A, góc A= 30 độ. Trên các cạnh AB, AC lấy các điểm Q, P tương ứng sao cho góc QPC = 45 độ và PQ = BC. Chứng minh BC = CQ
Bài 3: Cho tam giác ABC cân tại B có góc B= 30 độ. Kẻ đường vuông góc từ B đến AC, cắt AC tại H. Trên BH lấy điểm D sao cho BD = AC. Chứng minh tam giác ADC đều