Cho tam giác ABC vuông tại A, đường cao AH, có M trung điểm BC và N trung điểm AB. MN cắt AH tại D. Kẻ HE vuông góc với AC, HF vuông góc với AB.
a/ Chứng minh EF = AH
b/ Chứng minh AM vuông góc với EF
c/ Chứng minh EF song song với BD
Cho tam giác ABC vuông tại A, đường cao AH. Gọi M là trung điểm của BC. Biết BC=10cm a)Tính AM b)Vẽ HE vuông góc với AB;HF vuông góc với AC(E thuộc AB;F thuộc AC) Chứng minh rằng : AH=EF c)Vẽ HN//EF(N thuộc AC). Chứng minh rằng: FA=FN d)Chứng minh rằng: AM vuông góc với HN Giúp mình với cần gấp ạ
b: Xét tứ giác AEHF có
\(\widehat{AEH}=\widehat{AFH}=\widehat{EAF}=90^0\)
Do đó: AEHF là hình chữ nhật
Suy ra: AH=EF
Cho tam giác ABC vuông tại A, AH là đường cao (H thuộc BC). Kẻ HE, HF lần lượt vuông góc với AB và AC (E thuộc AB, F thuộc AC). a)Chứng minh AH=EF.
b)Gọi O là giao điểm của AH và EF, K là trung điểm của AC. Qua F kẻ đường thẳng vuông góc với EF cắt BC ở I. Chứng minh tứ giác AOIK là hình bình hành
Câu 1: Cho tam giác ABC vuông tại A, đường cao AH, D và E là 2 đường vuông góc kẻ từ H đến AB và AC.
A) Chứng minh AH=DE
B) I là trung điểm HB, K là trung điểm HC. Chứng minh DI song song với EK
Câu 2: Cho tam giác ABC vuông góc tại A, đường cao AH, trung tuyến AM.
A) Chứng minh góc HAB = góc MAC
B) Vẽ HD vuông góc với AB, HE vuông góc với AC. Chứng minh AM vuông góc với DE.
1a) A=D=E=90 độ
=>AEHD là hcn
=>AH=DE
b)Xét tam giác DBH vuông tại D có:
DI là đường trung tuyến ứng với cạnh huyền BH
=>DI=BH/2=IH
=>tam giác IDH cân tại I
=>góc IDH=góc IHD (1)
Gọi O là gđ 2 đường chéo AH và DE
=>OD=OA=OE=OH (tự c/m)
=> tam giác DOH cân tại O
=> góc ODH=góc OHD(2)
từ (1) và (2) => góc ODH+góc IDH=90 độ(EHD+DHI=90 độ)
=>IDvuông góc DE(3)
Cmtt ta được: KEvuông góc DE(4)
Từ (3)và (4) => DI//KE.
2a) Ta có góc HAB+góc HAC=90 độ (1)
Xét tam giác ABC vuông tại A có
AM là đg trung tuyến ứng vs cạnh huyền BC
=>AM=MC
=>tam giác AMC cân
=>góc MAC=góc ACM
Lại có: góc HAC+góc ACH=90 độ(2)
Từ (1) và (2) => góc BAH=góc ACM
Mà góc AMC=góc MAC(cmt)
=>ABH=MAC(3)
b)A=D=E=90 độ
=>AFHE là hcn
Gọi O là gđ EF và AM
OA=OF(tự cm đi nha)
=>tam giác OAF cân
=>OAF=OFA(4)
Ta có : OAF+MCA=90 độ(5)
Từ (3)(4) và (5)
=>MAC+OFA=90 độ
Hay AM vuông góc EF
k giùm mình nha.
Hình bạn tự kẻ nhá
a) Xét Δ ABC vuông tại A có :
AM là đường trung tuyến
=> AM=1/2BC (tính chất đường trung tuyến trong Δ vuông)
=> AM=MC
=>Δ AMC cân tại M => góc MAC= góc MCA
Mà góc AMC+ Góc ABC = 90° (vì tam giác ABC vuông tại A)
=> góc ABC+ góc MAC = 90° (1)
Xét tam giac vuông AHB có: góc HAB + góc ABC = 90° (2)
Từ (1) và (2) => góc BAH = góc MAC ( cùng phụ với góc ABC )
Vậy góc BAH = góc MAC
Cho tam giác ABC cân tại A, có H là trung điểm của BC.
Biết AB = 5cm; BC = 6cm.
a) Chứng minh: DAHB = DAHC.
b) Tính độ dài BH và AH.
c) Kẻ HE vuông góc với AC, HF vuông góc với AB. Chứng minh: AH là đường trung trực của EF.
d) Từ B kẻ BP vuông góc với AC. Gọi giao điểm của BP và HF tại I. Chứng minh: tam giác BIH là tam giác cân.
a) Vì tam giác ABC cân tại A suy ra AC=AC (T/chất), góc B= góc C
Xét tam giác ABH và tam giác ACH
Có: AB=AC (Vì tam giác ABC cân tại A)
AH chung
HB=HB (GT)
suy ra tam giác ABH = tam giác ACH (c.c.c) (1)
b) Vì HB=HC=BC/2=6/2=3 (cm)
Từ (1) suy ra góc AHB=góc AHC (2 góc tương ứng)
mà góc AHB=góc AHC=180 độ
suy ra góc AHB=góc AHC=90 độ
Xét tam giác AHB vuông tại H suy ra AB^2=AH^2+BH^2 (Định lý pytago)
suy ra 5^2=AH^2+3^2
25=AH^2+9
suy ra AH^2=16 suy ra AH=4(cm) vì AH >0
c) Xét tam giác vuông AHE và tam giác vuông AHF
có AH chung
góc HAE=góc HAF ( theo câu a)
suy ra tam giác AHE =tam giác AHF (cạnh huyền-góc nhọn)
suy ra AE=AF suy ra A thuộc đường TT của EF (3)
HE=HF suy ra H thuộc đường TT của EF (4)
từ (3) và (4) suy ra AH là đường TT của EF
Cho tam giác ABC vuông tại A, AH là đường cao ( H thuộc BC). Kẻ HE, HF lần lượt vuông góc với AB và AC (E thuộc AB, F thuộc AC).
a) Chứng minh AH = EF.
b) Gọi O là giao điểm của AH và EF, K là trung điểm của AC. Qua F kẻ đường thẳng vuông góc với EF cắt BC tại I.Chứng minh tứ giác AOIK là hình bình hành.
c) EF cắt IK tại M. Chứng minh tam giác OMI cân
Cho tam giác ABC vuông tại A, AH là đường cao ( H thuộc BC). Kẻ HE, HF lần lượt vuông góc với AB và AC (E thuộc AB, F thuộc AC).
a) Chứng minh AH = EF.
b) Gọi O là giao điểm của AH và EF, K là trung điểm của AC. Qua F kẻ đường thẳng vuông góc với EF cắt BC tại I.Chứng minh tứ giác AOIK là hình bình hành.
c) EF cắt IK tại M. Chứng minh tam giác OMI cân
a: Xét tứ giác AEHF có
góc AEH=góc AFH=góc FAE=90 độ
nên AEHF là hình chữ nhật
=>AH=EF
b: góc IFE=90 độ
=>góc IFH+góc EFH=90 độ
=>góc IFH+góc AHF=90 độ
=>góc IFH=góc IHF
=>IH=IF và góc IFC=góc ICF
=>IH=IC
=>I là trung điểm của HC
Xét ΔHAC có HO/HA=HI/HC
nên OI//AC và OI=AC/2
=>OI//AK và OI=AK
=>AOIK là hình bình hành
Cho tam giác ABC vuông tại A, đường cao AH và M là trung điểm của BC. T ừ H kẻ HE vuông góc AB, HF vuông góc AC. Chứng minh rằng AM vuông góc EF.
cho tam giác abc cân tại a gọi h là trung điểm của bc
a, Chứng minh AH vuông góc với BC
b, Kẻ HE vuong góc với AB tại E ; HF vuông góc với AC tại F . Chứng minh HE = HF
c, Chứng minh tam giác AEF là tam giác cân
d, Chứng minh EF song song BC
Cho tam giác ABC vuông tại A lấy D trên BC.Gọi M,N theo thứ tự là hình chiếu của AB và AC.a)Chứng minh MN=AD.b)Kẻ đường cao AH của tam giác ABC.Chứng minh góc MHN=90.c)Kẻ HE vuông góc AB,HF vuông góc AC,qua A kẻ đường vuông góc với EF cắt BC tại K.Chứng minh K là trung điểm của BC
a: Xét tứ giác AMDN có
\(\widehat{AMD}=\widehat{AND}=\widehat{MAN}=90^0\)
Do đó: AMDN là hình chữ nhật
Suy ra: AD=MN
cho tam giác ABC vuông tại A , có đường cao AH . Vẽ HE vuông góc với AB , vẽ HF vuông góc với AC ( E ϵ AB, F ϵ AC) . Gọi I là trung điểm của BC. a) chứng minh rằng EF = AH