tìm x,y thuộc z:
xy+2x+2y=3
Đề bài : Tìm x , y thuộc Z , biết :a) xy + x + 2y = 5b) xy - 3x - y = 0c)xy +2x +2y = -16
a) \(xy+x+2y=5\\ \Rightarrow y\left(x+2\right)+x+2=5+2\\ \Rightarrow\left(x+2\right)\left(y+1\right)=7\)
Ta xét bảng:
x+2 | 1 | 7 | -1 | -7 |
x | -1 | 5 | -3 | -9 |
y+1 | 7 | 1 | -7 | -1 |
y | 6 | 0 | -8 | -2 |
Vậy \(\left(x;y\right)\in\left\{\left(-1;6\right);\left(5;0\right);\left(-3;-8\right);\left(-9;-2\right)\right\}\)
b) \(xy-3x-y=0\\ \Rightarrow x\left(y-3\right)-y+3=3\\ \Rightarrow\left(y-3\right)\left(x-1\right)=3\)
Ta xét bảng:
x-1 | 1 | 3 | -1 | -3 |
x | 2 | 4 | 0 | -2 |
y-3 | 3 | 1 | -3 | -1 |
y | 6 | 4 | 0 | 2 |
Vậy \(\left(x;y\right)\in\left\{\left(2;6\right);\left(4;4\right);\left(0;0\right);\left(-2;2\right)\right\}\)
c) \(xy+2x+2y=-16\\ \Rightarrow x\left(y+2\right)+2y+4=-12\\ \Rightarrow\left(y+2\right)\left(x+2\right)=-12\)
Ta xét bảng:
x+2 | 1 | 2 | 3 | 4 | 6 | 12 | -1 | -2 | -3 | -4 | -6 | -12 |
x | -1 | 0 | 1 | 2 | 4 | 10 | -3 | -4 | -5 | -6 | -8 | -14 |
y+2 | -12 | -6 | -4 | -3 | -2 | -1 | 12 | 6 | 4 | 3 | 2 | 1 |
y | -14 | -8 | -6 | -5 | -4 | -3 | 10 | 4 | 2 | 1 | 0 | -1 |
Vậy \(\left(x;y\right)\in\left\{\left(-1;-14\right);\left(0;-8\right);\left(1;-6\right);\left(2;-5\right);\left(4;-4\right);\left(10;-3\right);\left(-3;10\right);\left(-4;4\right);\left(-5;2\right);\left(-6;1\right);\left(-8;0\right);\left(-14;-1\right)\right\}\)
Tìm x
a, (x+y).(2x-1)=0
b,(x+y)(2x-1)=3 với x,y thuộc Z
c, xy+x-2y=3 với x,y thuộc Z
a)
<=> x+y=0 hoặc 2x-1=0
<=> x=-y hoặc x=1/2.
b)
=> x+y và 2x-1 là ước của 3 =1;3;-1;-3.
Do 2x-1 ko chia hết cho 2
TH1=> 2x-1=-1 và x+y=-3
=> x=0 và y=-3
TH2: 2x-1=1 và x+y=3
=> x=1 và y=2.
c) <=>x(y+1)-2y-2=1
<=> x(y+1)-2(y+1)=1
<=> (x-2)(y+1)=1
=> x-2; y+1 là ước của 1 =1;-1
TH1 x-2=1 và y+1=1
=> x=3 và y=0
TH2 x-2=-1 và y+1=-1
=> x=1 và y=-2.
( x + y ).( 2x - 1 ) = 0
\(\Rightarrow\orbr{\begin{cases}x+y=0\\2x-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x+y=0\\2x=0+1\end{cases}\Rightarrow}\orbr{\begin{cases}x+y=0\\2x=1\end{cases}}}\)
\(\Rightarrow\orbr{\begin{cases}\frac{1}{2}+y=0\\x=\frac{1}{2}\end{cases}}\Rightarrow\orbr{\begin{cases}y=0+\frac{1}{2}\\x=\frac{1}{2}\end{cases}\Rightarrow\orbr{\begin{cases}y=\frac{1}{2}\\x=\frac{1}{2}\end{cases}}}\)
Vậy ...................
tìm x,y thuộc Z sao cho xy=2x+2y
\(xy=2x+2y\\ \Rightarrow xy-2x-2y=0\\ \Rightarrow x\left(y-2\right)-2y+4=4\\ \Rightarrow x\left(y-2\right)-2\left(y-2\right)=4\\ \Rightarrow\left(x-2\right)\left(y-2\right)=4\)
Vì \(x,y\in Z\Rightarrow\left\{{}\begin{matrix}x-2,y-2\in Z\\x-2,y-2\inƯ\left(4\right)\end{matrix}\right.\)
Ta có bảng:
x-2 | -1 | -2 | -4 | 1 | 2 | 4 |
y-2 | -4 | -2 | -1 | 4 | 2 | 1 |
x | 1 | 0 | -2 | 3 | 4 | 6 |
y | -2 | 0 | 1 | 6 | 4 | 3 |
Vậy \(\left(x,y\right)\in\left\{\left(1;-2\right);\left(0;0\right);\left(-2;1\right);\left(3;6\right);\left(4;4\right);\left(6;3\right)\right\}\)
xy-2x-2y=0.Tìm x,y thuộc Z
dẽ mà
xy-2(xy)=0
xy(2-1)=0
xy=0
x=0 hoặc y=0
Tìm x,y thuộc Z
2x+2y=xy
xy+2x+2y=-16. Tìm x,y thuộc Z
tìm x,y thuộc z
1)xy+2x-2y-5=0
2)3x-xy-y+2=0
3)xy+2x-y=6
4)xy+3x+2y=-1
5)xy+x=7xy+16
giai toan giup minh nhe
1, xy+2x-2y-5=0
=> x.( y+2)-2.(y+2)=5
=> (y+2).(x-2)=5
Vì x, y thuộc Z => y+2; x-2 thuộc Z
Mà 5=1.5=-1.(-5) và hoán vị của chúng
Ta có bảng sau:
y+2 1 5 -1 -5
x-2 5 1 -5 -1
y -1 3 -3 -7
x 7 3 -3 1
nHỚ K CHO MIK NHÉ
Tìm x, y thuộc Z thỏa mãn:
a) xy - x + 2y = 3
b) 2x + 3y = 21
tìm x , y thuộc Z thỏa mãn :
a, xy - x + 2y = 3
b, 2x + 3y = 21
a)x=-3;y=2
b)x=6;y=-3
nếu muốn cách giải thi tich cho mk nha
Tìm x,y thuộc Z
2x+2y=xy