Cho tam giác ABC, 2 đường phân giác AD và BE cắt nhau tại M. Biết AB bằng 12cm; AM/MD bằng 2/3; AE/EC bằng 6/7. Tính AC?
1) Cho tam giác ABC có phân giác AD và trung tuyến BE cắt nhau tại O. Đường thẳng qua O và song song với AC cắt AB và BA lần lượt tại M và N. Tình độ dài các cạnh AB và BC, biết rằng AM=12cm, AC=40cm, CN=14cm
2)cho tam giác ABC cân tại A có CD đường cao. Trên các cạnh CB và CA lấy các điểm E và F sao cho DC=CE=CF. Đường thẳng qua E song song với AB cắt CD tại K và AC tại N, đường thẳng qua F và song song với AB cắt BC tại M. Tính độ dài các cạnh tam giác ABC, biết rằng EM=9cm, FN=12cm, IK=6cm
3)Cho hình thang cân ABCD(AB//CD). Đường cao AH cắt đường chéo BD tại K. AD và BC cắt nhau tại M. Tính độ dài AM, biết rằng AD=20cm, DK/KB=2/3.
Cho tam giác ABC, AB=8cm, AC=10cm, BC=12cm. Các đường phân giác BD và CE cắt nhau tại I. Tính AD, DC, AE, BE
Áp dụng định lý phân giác ta có:
\(\dfrac{AD}{DC}=\dfrac{AB}{AC}=\dfrac{4}{5}\Rightarrow\dfrac{AD}{4}=\dfrac{DC}{5}=\dfrac{AD+DC}{4+5}=\dfrac{10}{9}\)
\(\dfrac{AD}{4}=\dfrac{10}{9}\Rightarrow AD=\dfrac{40}{9}\left(cm\right)\\ \dfrac{DC}{5}=\dfrac{10}{9}\Rightarrow DC=\dfrac{50}{9}\)
Áp dụng định lý phân giác ta có:
\(\dfrac{AE}{EB}=\dfrac{AC}{BC}=\dfrac{5}{6}\Rightarrow\dfrac{AE}{5}=\dfrac{EB}{6}=\dfrac{AE+EB}{5+6}=\dfrac{8}{11}\)
\(\dfrac{AE}{5}=\dfrac{8}{11}\Rightarrow AE=\dfrac{40}{11}\left(cm\right)\\ \dfrac{EB}{6}=\dfrac{8}{11}\Rightarrow EB=\dfrac{48}{11}\left(cm\right)\)
Cho tam giác ABC có AB < AC , các đường phân giác AD, BE lần lượt của góc A, góc B cắt nhau tại I. Gọi G là trọng tâm của tam giác ABC ( M là trung điểm của BC ).Có AB= 12cm, AC= 18cm, BC = 15cm.
Chứng minh IG//BC.
Xét ΔABC có AD là phân giác
nên BD/AB=CD/AC
=>BD/2=CD/3=(BD+CD)/(2+3)=15/5=3
=>BD=6cm và CD=9cm
Xét ΔBAD có BI là phân giác
nên AI/ID=AB/BD=2
=>AI/AD=2/3=AG/AM
=>IG//BC
Cho tam giác ABC có AB < AC , các đường phân giác AD, BE lần lượt của góc A, góc B cắt nhau tại I. Gọi G là trọng tâm của tam giác ABC ( M là trung điểm của BC ).Có AB= 12cm, AC= 18cm, BC = 15cm.
Chứng minh IG//BC.
Xét ΔABC có AD là phân giác
nên BD/AB=CD/AC
=>BD/2=CD/3=(BD+CD)/(2+3)=15/5=3
=>BD=6cm và CD=9cm
Xét ΔBAD có BI là phân giác
nên AI/ID=AB/BD=2
=>AI/AD=2/3=AG/AM
=>IG//BC
cho tam giác ABC có AD là phân giác góc BAC , D thuộc BC
a) cho biết AB = 10cm , AC = 12cm , BD = 4cm . tính độ dài BC
b) qua D kẻ đường thẳng song song với AB , cắt AC tại E. Gọi M là trung điểm của AB , AD , cắt EM tại I , BE cắt MD tại K. Chứng minh rằng : IE/IM = KD/KM. từ đó chứng minh IK song song ED.
cho tam giác ABC có AD là phân giác góc BAC , D thuộc BC.
a) cho biết AB = 10cm , AC = 12cm , BD = 4cm . tính độ dài BC
b) qua D kẻ đường thẳng song song với AB , cắt AC tại E. Gọi M là trung điểm của AB , AD , cắt EM tại I , BE cắt MD tại K. Chứng minh rằng : IE/IM = KD/KM. từ đó chứng minh IK song song ED.
a) Xét \(\Delta ABC:\)
AD là phân giác \(\widehat{BAC}\left(gt\right).\)
\(\Rightarrow\dfrac{BD}{CD}=\dfrac{AB}{AC}\) (Tính chất phân giác).
\(\Rightarrow\dfrac{BD}{CD+BD}=\dfrac{AB}{AC+AB}.\\ \Rightarrow\dfrac{BD}{BC}=\dfrac{AB}{AC+AB}.\)
Thay: \(\dfrac{4}{BC}=\dfrac{10}{12+10}.\Rightarrow BC=8,8\left(cm\right).\)
Vậy \(BC=8,8\left(cm\right).\)
cho tam giác abc có ab=ac = 10cm,bc = 12cm,các đường cao ad và ce cắt nhau tại h. a) tính ad b) tam giác abd đồng dạng với tam giác cbe c) tính be,hd
b: Xét ΔABD vuông tại D và ΔCBE vuông tại E có
\(\widehat{B}\) chung
Do đó: ΔABD\(\sim\)ΔCBE
Cho tam giác ABC cân tại A.Có gócBAC=40 độ
1/ So sánh các cạnh AB và BC của tam giác ABC
2/ Đường phân giác AD và đường trung tuyến BE cua tam giác ABC cắt nhau tại H.C/m tam giác ADB = tam giác ADC
3/C/m đường thẳng CH đi qua trung điểm của AB
cho tam giác ABC có AB=AC=10cm,BC=12cm,Các đường cao AD ,CE cắt nhau tại H a)c/m tam giác ABD và tam giác CBEb)tính độ dài BE c)tính độ dài HD giúp mình câu c thui ạ
a: Xét ΔABD vuông tại D và ΔCBE vuông tại E có
góc B chung
=>ΔABD đồng dạng với ΔCBE
b:
ΔABC cân tại A có AD là đường cao
nên D là trung điểm của BC
=>DB=DC=12/2=6cm
=>AD=8cm
ΔABD đồng dạng với ΔCBE
=>BE/BD=AB/CB=AD/CE
=>BE/6=10/12=8/CE
=>BE=5cm; CE=12*8/10=9,6cm
c: Xét ΔCDH vuông tại D và ΔCEB vuông tại E có
góc HCD chung
=>ΔCDH đồng dạng với ΔCEB
=>HD/EB=CD/CE
=>HD/5=6/9,6=5/8
=>HD=25/8cm
Mình đang cần gấp ai giúp mình với!
Cho tam giác ABC vuông tại A có AB = 5cm, AC = 12cm. Có 2 đường phân giác AD, BE cắt nhau tại I.
a, Tính độ dài AE, EC
b, Khoảng cách từ I đến đường thẳng AC
c, Độ dài phân giác AD ( làm tròn tới hàng phần trăm)
d, Diện tích tam giác DEI
a: Ta có: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(BC^2=5^2+12^2=169\)
=>\(BC=\sqrt{169}=13\left(cm\right)\)
Xét ΔBAC có BE là phân giác
nên \(\dfrac{AE}{AB}=\dfrac{CE}{CB}\)
=>\(\dfrac{AE}{5}=\dfrac{CE}{13}\)
mà AE+CE=AC=12
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{AE}{5}=\dfrac{CE}{13}=\dfrac{AE+CE}{5+13}=\dfrac{12}{18}=\dfrac{2}{3}\)
=>\(AE=5\cdot\dfrac{2}{3}=\dfrac{10}{3}\left(cm\right);CE=13\cdot\dfrac{2}{3}=\dfrac{26}{3}\left(cm\right)\)
b: Kẻ IH\(\perp\)AC
=>IH là khoảng cách từ I xuống AC
IH\(\perp\)AC
AB\(\perp\)AC
Do đó: IH//AB
Xét ΔAEB có AI là phân giác
nên \(\dfrac{EI}{IB}=\dfrac{AE}{AB}=\dfrac{10}{3}:5=\dfrac{2}{3}\)
=>\(\dfrac{EI}{EB}=\dfrac{2}{5}\)
Xét ΔEAB có HI//AB
nên \(\dfrac{HI}{AB}=\dfrac{EI}{EB}\)
=>\(\dfrac{HI}{5}=\dfrac{2}{5}\)
=>HI=2(cm)
c: Xét ΔABC có AD là phân giác
nên \(AD=\dfrac{2\cdot AB\cdot AC}{AB+AC}\cdot cos45\)
=>\(AD=\dfrac{2\cdot5\cdot12}{5+12}\cdot\dfrac{\sqrt{2}}{2}\simeq4,99\left(cm\right)\)