A, vẽ đồ thị (p) của hàm số y=1/4x^2
b. Cho đường thẳng (d) y=3/2x+m đi qua điểm C(6;7). Tìm toạ độ giao điểm của (p) và (d)
cho hàm số y=(m-2)x+3
a) Tìm m để đồ thị hàm số song song với đường thẳng y=x
b) Vẽ đồ thị với m tìm được ở câu a. Tìm tọa độ giao điểm của đồ thị vừa vẽ với đường thẳng y=2x+1
c) Tìm điểm cố định mà đồ thị hàm số luôn đi qua với mọi giá trị của m
d) Tìm m để khoảng cách từ O đến đường thẳng (d) bằng 1
a/ Hai hàm số có đồ thị // với nhau khi
\(\hept{\begin{cases}m-2=1\\3\ne0\end{cases}}\Leftrightarrow m=3\)
b/ Tọa độ giao điểm 2 đường thẳng là nghiệm của hệ
\(\hept{\begin{cases}y=x+3\\y=2x+1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=5\end{cases}}\)
c/ Gọi điểm mà đường thẳng luôn đi qua là M(a,b) ta thế vào hàm số được
\(b=ma+3\)
\(\Leftrightarrow ma+3-b=0\)
Để phương trình này không phụ thuôc m thì
\(\hept{\begin{cases}a=0\\3-b=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a=0\\b=3\end{cases}}\)
Tọa độ điểm cần tìm là M(0, 3)
d/ Ta có khoản cách từ O(0,0) tới (d) là 1
\(\Rightarrow=\frac{\left|0-0m-3\right|}{\sqrt{1^2+m^2}}=\frac{3}{\sqrt{1+m^2}}=1\)
\(\Leftrightarrow\sqrt{1+m^2}=3\)
\(\Leftrightarrow m^2=8\)
\(\Leftrightarrow\orbr{\begin{cases}m=2\sqrt{2}\\m=-2\sqrt{2}\end{cases}}\)
cho hàm số y=ax+b
a,xác định hàm số biết đồ thị của chúng song song với y=2x+3 và đi qua điểm A(1;-2)
b,vẽ đồ thị hàm số vừa xác định rồi tính độ lớn của góc được tạo bởi đường thẳng trên với trục Õ
c,tìm tọa độ giao điểm của đường thẳng trên với đường thẳng y=-4x+3
d,tìm giá trị của m để đường thẳng trên song song với đường thẳng y=(2m-3)x+2
5. Tìm điều kiện của tham số để đồ thị hàm số đi qua một điểm A ( x0; y0) cho trước. y = (2 - m )x + m,Thì đồ thị hàm số đi qua A(-1; 6) 6. Tìm điều kiện của m để:Cho( d) :y = (m − 2)x + n (m ≠ 2). a) Đường thẳng (d) cắt đường thẳng (d1): −2y + x − 5 = 0 b) Đường thẳng (d) song song với đường thẳng(d2): 3x + y = 1 c) Đường thẳng (d) trùng với đường thẳng (d3): y = 2x + 3 7. Cho hàm số y = ( m+2)x + n-1 ( m -2) có đồ thị là đừờng thẳng (d) Cho n= 6,Gọi giao điểm của (d) với hai trục toạ độ là A, B.Tìm m để tam giác ABC có diện tích bằng 6
Mọi người giúp em với ạ,em cảm ơn !
Bài 1: Cho đường thẳng d, y=(m-1)x+m
a)Tìm m để hàm số nghịch biến trên R
b) tìm m để đồ thị hàm số đi qua gốc tọa độ
c) Với m=2,vẽ đồ thị hàm số
d) Chứng tỏ rằng đường thẳng d luôn luôn đi qua 1 điểm cố định với mọi m,Tìm điểm đó
Bài 2: Cho 3 điểm A(2;4),B(-3;-1),C(2;1).Hãy chứng minh 3 điểm thẳng hàng
Bài 3: Cho hàm số y=ax-4
a) Tìm a biết đồ thị hàm số đi qua điểm M(2;5)
b)Vẽ đồ thị hàm số vừa tìm được
Bài 4 : Tìm hàm số y=ax+b,biết đồ thị hàm số của nó đi qua 2 điểm A(2;5) và B(-2;-3)
Bài 1: a) Cho hàm số f(x) = (a- 1)x + b. Xác định hàm số biết f(-1) = 2014 ; f(2) = 2017
b) Tìm m;n để đa thức P(x) = mx3 + (m + 2)x2 - (3n - 5)x - 4n đồng thời chia hết cho x + 1 và x - 3
Bài 2: Cho đường thẳng (d): y = 4x
viết phương trình đường thẳng (d1) song song với đường thẳng (d) và có tung độ gốc bằng 10
Bài 3: Xác định a;b để đồ thị hàm số y = ax + b đi qua A(3;-1) và B(-3;2)
Bài 4: Cho 2 hàm số bậc nhất y = x - m và y = -2x + m - 1
a) Xác định tọa độ giao điểm của đồ thị 2 hàm số khi m = 2
b) Vẽ đồ thị 2 hàm số trên khi m = 2
c) Tìm m để đồ thị 2 hàm số cắt nhau tại 1 điểm trên trục tung
Bài 5: Viết phương trình đường thẳng (d) có hệ số góc bằng 7 và đi qua điểm M(2;-1)
Bài 6: Cho 3 đường thẳng: (d1): y = -2x + 3; (d2): y = 3x - 2; (d3): y = m(x + 1) - 5
a) Tìm m để 3 đường thẳng đã cho đồng quy
b) Chứng minh rằng đường thẳng (d3) luôn đi qua 1 điểm cố định khi m thay đổi
cho hàm số y= 2x^2 + 2mx + m -1
a, định m để đồ thị hàm số đi qua gốc tọa độ
b, xét sự biến thiên và vẽ đồ thị (P) khi m=1
c, tìm giao điểm của đồ thị (p) vs đường thẳng y=-x-1
d, vẽ đường thẳng này trên cùng hệ trục tọa độ của (p)
Bài 1: Cho hàm số y=[ m-2]x + 3
a. Tìm m để đồ thị [d] của hàm số song song với đường thẳng y=x - 2
Vẽ [d] trong trường hợp này và tính góc tạo bởi [d] với trục hoành
b. Tìm m để đồ thị [d] của hàm số đồng qui với hai đường thẳng y= -2x + 1 và y= -x + 4
Bài 2 : Trên mặt phẳng tọa độ cho ba điểm A[2;3], B[-1;-3] và C[0;1]
a] Tìm hệ số góc của đường thẳng AB
b] Chứng tỏ rằng ba điểm A,B,C thẳng hàng
Bài 3: Cho hàm số y= mx- 2m - 1
a] Định m để đồ thị hàm số đi qua gốc tạo độ O \
b] Gọi A,B lần lượt là giao điểm của đồ thị hàm số với các trục Ox, Oy. Định m để diện tích tam giác OAB bằng [ đvdt]
c] Chứng minh rằng với mọi giá trị của m thì đồ thị của hàm số đã cho luôn đi qua một điểm cố định
Bài 1 : Cho hàm số y = (m + 5)x+ 2m – 10
Với giá trị nào của m thì y là hàm số bậc nhất
Với giá trị nào của m thì hàm số đồng biến.
Tìm m để đồ thị hàm số điqua điểm A(2; 3)
Tìm m để đồ thị cắt trục tung tại điểm có tung độ bằng 9.
Tìm m để đồ thị đi qua điểm 10 trên trục hoành .
Tìm m để đồ thị hàm số song song với đồ thị hàm số y = 2x -1
Chứng minh đồ thị hàm số luôn đi qua 1 điểm cố định với mọi m.
Tìm m để khoảng cách từ O tới đồ thị hàm số là lớn nhất
Bài 2: Cho đường thẳng y=2mx +3-m-x (d) . Xác định m để:
Đường thẳng d qua gốc toạ độ
Đường thẳng d song song với đường thẳng 2y- x =5
Đường thẳng d tạo với Ox một góc nhọn
Đường thẳng d tạo với Ox một góc tù
Đường thẳng d cắt Ox tại điểm có hoành độ 2
Đường thẳng d cắt đồ thị Hs y= 2x – 3 tại một điểm có hoành độ là 2
Đường thẳng d cắt đồ thị Hs y= -x +7 tại một điểm có tung độ y = 4
Đường thẳng d đi qua giao điểm của hai đường thảng 2x -3y=-8 và y= -x+1
Bài 3: Cho hàm số y=( 2m-3).x+m-5
Vẽ đồ thị với m=6
Chứng minh họ đường thẳng luôn đi qua điểm cố định khi m thay đổi
Tìm m để đồ thị hàm số tạo với 2 trục toạ độ một tam giác vuông cân
Tìm m để đồ thị hàm số tạo với trục hoành một góc 45o
Tìm m để đồ thị hàm số tạo với trục hoành một góc 135o
Tìm m để đồ thị hàm số tạo với trục hoành một góc 30o , 60o
Tìm m để đồ thị hàm số cắt đường thẳng y = 3x-4 tại một điểm trên 0y
Tìm m để đồ thị hàm số cắt đường thẳng y = -x-3 tại một điểm trên 0x
Bài4 (Đề thi vào lớp 10 tỉnh Hải Dương năm 2000,2001) Cho hàm số y = (m -2)x + m + 3
a)Tìm điều kiện của m để hàm số luôn luôn nghịch biến .
b)Tìm điều kiện của m để đồ thị cắt trục hoành tại điểm có hoành độ bằng 3.
c)Tìm m để đồ thị hàm số y = -x + 2, y = 2x –1 và y = (m - 2)x + m + 3 đồng quy.
d)Tìm m để đồ thị hàm số tạo với trục
Bài 1:
Đặt: (d): y = (m+5)x + 2m - 10
Để y là hàm số bậc nhất thì: m + 5 # 0 <=> m # -5
Để y là hàm số đồng biến thì: m + 5 > 0 <=> m > -5
(d) đi qua A(2,3) nên ta có:
3 = (m+5).2 + 2m - 10
<=> 2m + 10 + 2m - 10 = 3
<=> 4m = 3
<=> m = 3/4
(d) cắt trục tung tại điểm có tung độ bằng 9 nên ta có:
9 = (m+5).0 + 2m - 10
<=> 2m - 10 = 9
<=> 2m = 19
<=> m = 19/2
(d) đi qua điểm 10 trên trục hoành nên ta có:
0 = (m+5).10 + 2m - 10
<=> 10m + 50 + 2m - 10 = 0
<=> 12m = -40
<=> m = -10/3
(d) // y = 2x - 1 nên ta có:
\(\hept{\begin{cases}m+5=2\\2m-10\ne-1\end{cases}}\) <=> \(\hept{\begin{cases}m=-3\\m\ne\frac{9}{2}\end{cases}}\) <=> \(m=-3\)
Giả sử (d) luôn đi qua điểm cố định M(x0; y0)
Ta có: \(y_0=\left(m+5\right)x_0+2m-10\)
<=> \(mx_0+5x_0+2m-10-y_0=0\)
<=> \(m\left(x_o+2\right)+5x_0-y_0-10=0\)
Để M cố định thì: \(\hept{\begin{cases}x_0+2=0\\5x_0-y_0-10=0\end{cases}}\) <=> \(\hept{\begin{cases}x_0=-2\\y_0=-20\end{cases}}\)
Vậy...
Bài 2: Cho hàm số y=2x-6 có đồ thị là đường thẳng (d)
a) Vẽ đường thẳng (d) trong mặt phẳng tọa độ Oxy
b) Xác định các hệ số a, b của hàm số y=ax+b biết rằng đồ thị (d') của hàm số này song song với (d) và đi qua điểm I (1; 4)
giải chi tiết cụ thể giúp mk vớiiiiiiiiii ạh
b: Vì (d')//(d) nên a=2
Vậy: (d'): y=2x+b
Thay x=1 và y=4 vào (d'), ta được:
b+2=4
hay b=2