Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
manh
Xem chi tiết
HT.Phong (9A5)
14 tháng 8 2023 lúc 9:24

\(\dfrac{\sqrt{6}+\sqrt{14}}{2\sqrt{3}+\sqrt{28}}\)

\(=\dfrac{\sqrt{2}\left(\sqrt{3}+\sqrt{7}\right)}{2\sqrt{3}+2\sqrt{7}}\)

\(=\dfrac{\sqrt{2}\left(\sqrt{3}+\sqrt{7}\right)}{2\left(\sqrt{3}+\sqrt{7}\right)}\)

\(=\dfrac{\sqrt{2}}{2}\)

___________

\(\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+4}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{4}+\sqrt{6}+\sqrt{8}+\sqrt{4}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=\dfrac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)+\sqrt{2}\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=\dfrac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)\left(1+\sqrt{2}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=1+\sqrt{2}\)

__________

\(\dfrac{3\sqrt{8}-2\sqrt{12}+\sqrt{20}}{3\sqrt{18}-2\sqrt{27}+\sqrt{45}}\)

\(=\dfrac{3\cdot2\sqrt{2}-2\cdot2\sqrt{3}+2\sqrt{5}}{3\cdot3\sqrt{2}-2\cdot3\sqrt{3}+3\sqrt{5}}\)

\(=\dfrac{6\sqrt{2}-4\sqrt{3}+2\sqrt{5}}{9\sqrt{2}-6\sqrt{3}+3\sqrt{5}}\)

\(=\dfrac{2\left(3\sqrt{2}-2\sqrt{3}+\sqrt{5}\right)}{3\left(3\sqrt{2}-2\sqrt{3}+\sqrt{5}\right)}\)

\(=\dfrac{2}{3}\)

Nguyễn Lê Phước Thịnh
14 tháng 8 2023 lúc 9:17

a: \(=\dfrac{\sqrt{2}\left(\sqrt{3}+\sqrt{7}\right)}{2\left(\sqrt{3}+\sqrt{7}\right)}=\dfrac{\sqrt{2}}{2}\)

b: \(=\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{4}+\sqrt{4}+\sqrt{6}+\sqrt{8}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=\dfrac{\left(\sqrt{2}+\sqrt{3}+2\right)\left(1+\sqrt{2}\right)}{\sqrt{2}+\sqrt{3}+2}=1+\sqrt{2}\)

c: \(=\dfrac{6\sqrt{2}-4\sqrt{3}+2\sqrt{5}}{9\sqrt{2}-6\sqrt{3}+3\sqrt{5}}=\dfrac{2}{3}\)

Tiếng Anh Trường THCS Ki...
Xem chi tiết
Nguyễn Hoàng Minh
3 tháng 10 2021 lúc 13:59

\(a,\sqrt{8+2\sqrt{15}}-\sqrt{6+2\sqrt{5}}\\ =\sqrt{3}+\sqrt{5}-\left(\sqrt{5}+1\right)=\sqrt{3}-1\\ b,=3-2\sqrt{2}-\left(3\sqrt{2}+1\right)=2-5\sqrt{2}\\ c,=\sqrt{7}-1+\sqrt{7}+1=2\sqrt{7}\\ d,=\sqrt{11}+1-\left(\sqrt{11}-1\right)=2\\ e,=\sqrt{7}-\sqrt{3}-\left(\sqrt{7}-\sqrt{2}\right)=\sqrt{2}-\sqrt{3}\)

Nguyễn Dương
Xem chi tiết
༺Tiểu Bạch Dương༻
Xem chi tiết
Ngô Chi Lan
29 tháng 8 2020 lúc 20:32

a) \(A=\sqrt{19+8\sqrt{3}}-\sqrt{4+2\sqrt{3}}\)

\(A=\sqrt{16+8\sqrt{3}+3}-\sqrt{3+2\sqrt{3}+1}\)

\(A=\sqrt{\left(4+\sqrt{3}\right)^2}-\sqrt{\left(\sqrt{3}+1\right)^2}\)

\(A=4+\sqrt{3}-\sqrt{3}-1=3\)

b) \(B=\sqrt{27+10\sqrt{2}}-\sqrt{18+8\sqrt{2}}\)

\(B=\sqrt{25+10\sqrt{2}+2}-\sqrt{16+8\sqrt{2}+2}\)

\(A=\sqrt{\left(5+\sqrt{2}\right)^2}-\sqrt{\left(4+\sqrt{2}\right)^2}\)

\(A=5+\sqrt{2}-4-\sqrt{2}=1\)

Khách vãng lai đã xóa
l҉o҉n҉g҉ d҉z҉
29 tháng 8 2020 lúc 20:39

\(A=\sqrt{19+8\sqrt{3}}-\sqrt{4+2\sqrt{3}}\)

\(=\sqrt{3+8\sqrt{3}+16}-\sqrt{3+2\sqrt{3}+1}\)

\(=\sqrt{\left(\sqrt{3}\right)^2+2\cdot\sqrt{3}\cdot4+4^2}-\sqrt{\left(\sqrt{3}\right)^2+2\cdot\sqrt{3}+1^2}\)

\(=\sqrt{\left(\sqrt{3}+4\right)^2}-\sqrt{\left(\sqrt{3}+1\right)^2}\)

\(=\left|\sqrt{3}+4\right|-\left|\sqrt{3}+1\right|\)

\(=\sqrt{3}+4-\left(\sqrt{3}+1\right)\)

\(=\sqrt{3}+4-\sqrt{3}-1=3\)

\(B=\sqrt{27+10\sqrt{2}}-\sqrt{18+8\sqrt{2}}\)

\(=\sqrt{2+10\sqrt{2}+25}-\sqrt{2+8\sqrt{2}+16}\)

\(=\sqrt{\left(\sqrt{2}\right)^2+2\cdot\sqrt{2}\cdot5+5^2}-\sqrt{\left(\sqrt{2}\right)^2+2\cdot\sqrt{2}\cdot4+4^2}\)

\(=\sqrt{\left(\sqrt{2}+5\right)^2}-\sqrt{\left(\sqrt{2}+4\right)^2}\)

\(=\left|\sqrt{2}+5\right|-\left|\sqrt{2}+4\right|\)

\(=\sqrt{2}+5-\left(\sqrt{2}+4\right)\)

\(=\sqrt{2}+5-\sqrt{2}-4=1\)

Khách vãng lai đã xóa
Qúy Công Tử
Xem chi tiết
Mai Anh Phạm
3 tháng 1 2019 lúc 13:12

1) \(\sqrt{12}\)+\(5\sqrt{3}-\sqrt{48}\)
= \(2\sqrt{3}+5\sqrt{3}-4\sqrt{3}\)
= (2+5-4).\(\sqrt{3}\)
= \(3\sqrt{3}\)

2)\(5\sqrt{5}+\sqrt{20}-3\sqrt{45}\)
= \(5\sqrt{5}+2\sqrt{5}-3.3\sqrt{5}\)
= \(5\sqrt{5}+2\sqrt{5}-9\sqrt{5}\)
= \(\left(5+2-9\right).\sqrt{5}\)
= -2\(\sqrt{2}\)

3)\(3\sqrt{32}+4\sqrt{8}-5\sqrt{18}\)
= \(3.4\sqrt{2}+4.2\sqrt{2}-5.3\sqrt{2} \)
= 12\(\sqrt{2}\) \(+8\sqrt{2}\) \(-15\sqrt{2}\)
= \(\left(12+8-15\right).\sqrt{2}\)
= \(5\sqrt{2}\)

4)\(3\sqrt{12}-4\sqrt{27}+5\sqrt{48}\)
= \(3.2\sqrt{3}-4.3\sqrt{3}+5.4\sqrt{3}\)
= \(6\sqrt{3}-12\sqrt{3}+20\sqrt{3}\)
= \(\left(6-12+20\right).\sqrt{3}\)
= \(14\sqrt{3}\)

5)\(\sqrt{12}+\sqrt{75}-\sqrt{27}\)
= \(2\sqrt{3}+5\sqrt{3}-3\sqrt{3}\)
= \(\left(2+5-3\right).\sqrt{3}\)
= \(4\sqrt{3}\)

6) \(2\sqrt{18}-7\sqrt{2}+\sqrt{162}\)
= \(2.3\sqrt{2}-7\sqrt{2}+9\sqrt{2}\)
= 6\(\sqrt{2}-7\sqrt{2}+9\sqrt{2}\)
= \(\left(6-7+9\right).\sqrt{2}\)
= 8\(\sqrt{2}\)

7)\(3\sqrt{20}-2\sqrt{45}+4\sqrt{5}\)
= \(3.2\sqrt{5}-2.3\sqrt{5}+4\sqrt{5}\)
= \(6\sqrt{5}-6\sqrt{5}+4\sqrt{5}\)
= \(4\sqrt{5}\)

8)\(\left(\sqrt{2}+2\right).\sqrt{2}-2\sqrt{2}\)
= \(\left(\sqrt{2}\right)^2+2\sqrt{2}-2\sqrt{2}\)
= 2


Hương Trương
4 tháng 1 2019 lúc 12:47
https://i.imgur.com/pmexRQv.jpg
Hương Trương
4 tháng 1 2019 lúc 12:48
https://i.imgur.com/Fbx1rk4.jpg
Ngân Hà Đặng
Xem chi tiết
Nguyễn Hoàng Minh
18 tháng 10 2021 lúc 11:21

\(a,Sửa:\dfrac{10+2\sqrt{10}}{\sqrt{5}+\sqrt{2}}+\dfrac{8}{1-\sqrt{5}}\\ =\dfrac{2\sqrt{5}\left(\sqrt{5}+\sqrt{2}\right)}{\sqrt{5}+\sqrt{2}}+\dfrac{8\left(1+\sqrt{5}\right)}{-4}\\ =2\sqrt{5}-2-2\sqrt{5}=-2\\ b,=\dfrac{\sqrt{32}-\sqrt{12}}{\sqrt{18}-\sqrt{48}}-\dfrac{\sqrt{5}+\sqrt{27}}{\sqrt{6}\left(\sqrt{5}+\sqrt{27}\right)}\\ =\dfrac{\sqrt{2}\left(4-\sqrt{6}\right)}{\sqrt{3}\left(\sqrt{6}-4\right)}-\dfrac{1}{\sqrt{6}}=\dfrac{\sqrt{6}}{3}-\dfrac{\sqrt{6}}{6}=\dfrac{2\sqrt{6}-\sqrt{6}}{6}=\dfrac{\sqrt{6}}{6}\)

Ling ling 2k7
Xem chi tiết
Nguyễn Lê Phước Thịnh
18 tháng 9 2021 lúc 22:09

k: \(\sqrt[3]{\left(4-2\sqrt{3}\right)\left(\sqrt{3}-1\right)}\)

\(=\sqrt[3]{\left(\sqrt{3}-1\right)^3}\)

\(=\sqrt{3}-1\)

Na
Xem chi tiết
Na
21 tháng 9 2018 lúc 22:54

Mysterious Person giúp e với! Em cảm ơn!!!

Nguyễn Lê Phước Thịnh
4 tháng 9 2022 lúc 21:51

a: \(=2\sqrt{5}-5\sqrt{5}-4\sqrt{5}+11\sqrt{5}=4\sqrt{5}\)

b: \(=2\sqrt{5}-2-2\sqrt{5}=-2\)

c: \(=3-\sqrt{6}+2\sqrt{6}-3=\sqrt{6}\)

d: \(=\dfrac{2\left(2\sqrt{2}-\sqrt{3}\right)}{\sqrt{6}\left(\sqrt{3}-2\sqrt{2}\right)}-\dfrac{1}{\sqrt{6}}\)

\(=\dfrac{-3}{\sqrt{6}}=-\dfrac{3\sqrt{6}}{6}=-\dfrac{\sqrt{6}}{2}\)

e: \(=\dfrac{8}{3}\sqrt{3}-\dfrac{1}{3}\sqrt{3}-\dfrac{4}{5}\sqrt{3}=\dfrac{23}{15}\sqrt{3}\)

An Tuệ
Xem chi tiết