Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
 Nguyễn Tuệ Minh
Xem chi tiết
Member lỗi thời :>>...
21 tháng 8 2021 lúc 15:56

Ta thấy :

36n-1 - k . 33n-2 + 1 ⋮ 7 <=> 9 . ( 36n-1 - k . 33n-2 + 1 ) ⋮ 7

<=> 36n+1 - k . 33n + 9 ⋮ 7

Vì 36n+1 ≡ 3 ( mod 7 ) , suy ra 36n+1 + 9 ≡ 5 ( mod 7 )

Do đó để 36n+1 - k . 3 + 9 ⋮ 7 thì k . 33n ≡ 5 ( mod 7 )

Từ đó ta chứng minh được : Nếu n chẵn thì k ≡ 5 ( mod 7 ) , còn nếu lẻ thì k ≡ -5 ( mod 7 )

Khách vãng lai đã xóa
Hắc Thiên
Xem chi tiết
Nguyễn Văn Hải
Xem chi tiết
tth_new
20 tháng 7 2019 lúc 9:06

Thử ha! Lâu không làm quên mất cách làm rồi má ơi:((

Giả sử \(n^k⋮n-1\left(1\right)\Rightarrow n⋮n-1\) Vì:

Nếu n không chia hết cho n - 1 thì khi phân tích ra thừa số nguyên tố, n không chứa n - 1 nên nk cũng không chưa thừa số nguyên tố n - 1 suy ra nk không chia hết cho n - 1. Mâu thuẫn với điều giả sử (1)

Vậy \(n⋮n-1\Leftrightarrow\left(n-1\right)+1⋮\left(n-1\right)\Rightarrow1⋮\left(n-1\right)\)

Suy ra \(n-1\inƯ\left(1\right)=1\left(\text{không xét }-1\text{ vì n\ge3 nên }n-1\text{dương. Do vậy ta chỉ xét ước dương}\right)\Rightarrow n=2\)

Mà n = 2 không thỏa mãn đk nên không tồn tại n > 3 thỏa mãn n chia hết cho n - 1 tức là không tồn tại nk chia hết cho n - 1 (mẫu thuẩn với điều giả sử)

Do vậy ta có đpcm.

P/s: Sai thì thôi nhá, quên mất cách làm mọe rồi

T.Q.Hưng.947857
3 tháng 11 2019 lúc 22:03

nk-1=(n-1)(nk-1-nk-2....+1) chia hết cho n-1

Khách vãng lai đã xóa
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
19 tháng 1 2019 lúc 10:37

Chọn A

Với số tự nhiên n ≥ 1, ta có:

Suy ra:

Cộng tương ứng hai vế các đẳng thức trên ta có  với mọi số tự nhiên n1

Để 

Ta kiểm tra với các giá trị  k   ∈   ℕ   từ bé đến lớn

 

Vậy số nguyên n > 1 nhỏ nhất là n = 41( ứng với k = 3).

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
22 tháng 3 2019 lúc 13:11

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
5 tháng 10 2017 lúc 8:57

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
8 tháng 5 2019 lúc 9:30

Đáp án đúng : B

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
23 tháng 2 2017 lúc 16:25

blua
Xem chi tiết
Đỗ Đức Duy
29 tháng 6 2023 lúc 15:36

Để tìm tất cả các số nguyên dương k thỏa mãn điều kiện đã cho, ta sẽ giải phương trình theo n.

2n + 11 chia hết cho 2k - 1 có nghĩa là tồn tại một số nguyên dương m sao cho:
2n + 11 = (2k - 1)m

Chuyển biểu thức trên về dạng phương trình tuyến tính:
2n - (2k - 1)m = -11

Ta nhận thấy rằng nếu ta chọn một số nguyên dương nào đó, ta có thể tìm được một số nguyên dương k tương ứng để phương trình trên có nghiệm. Do đó, ta chỉ cần tìm tất cả các số nguyên dương n thỏa mãn phương trình trên.

Để giải phương trình này, ta có thể sử dụng thuật toán Euclid mở rộng (Extended Euclidean Algorithm). Tuy nhiên, trong trường hợp này, ta có thể tìm được một số giá trị n và k thỏa mãn phương trình bằng cách thử từng giá trị của n và tính giá trị tương ứng của k.

Dưới đây là một số cặp giá trị n và k thỏa mãn phương trình đã cho:
(n, k) = (3, 2), (7, 3), (11, 4), (15, 5), (19, 6), …

Từ đó, ta có thể thấy rằng có vô số giá trị n và k thỏa mãn phương trình đã cho.