Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lyzimi
Xem chi tiết
ngonhuminh
18 tháng 1 2017 lúc 16:14

\(GTLN=\frac{2005^2}{4}\) Khi \(\hept{\begin{cases}a=\frac{2005}{2}\\b=\frac{2005}{2}\end{cases}}\)

ngonhuminh
18 tháng 1 2017 lúc 16:15

tự tìm stn 

Lyzimi
4 tháng 6 2017 lúc 20:53

ngonhuminh sai nặng nề luôn 

hh hh
Xem chi tiết
Anhnek
Xem chi tiết
Lê Song Phương
29 tháng 10 2023 lúc 14:09

a) \(10^a+483=b^2\)   (*)

 Nếu \(a=0\) thì (*) \(\Leftrightarrow b^2=484\Leftrightarrow b=22\)

 Nếu \(a\ge1\) thì VT (*) chia 10 dư 3, mà \(VP=b^2\) không thể chia 10 dư 3 nên ta có mâu thuẫn. Vậy \(\left(a,b\right)=\left(0,22\right)\) là cặp số tự nhiên duy nhất thỏa mãn điều kiện bài toán.

 (Chú ý: Trong lời giải đã sử dụng tính chất sau của số chính phương: Các số chính phương khi chia cho 10 thì không thể dư 2, 3, 7, 8. Nói cách khác, một số chính phương không thể có chữ số tận cùng là 2, 3, 7, 8)

b) Bạn gõ lại đề bài nhé, chứ mình nhìn không ra :))

CCDT
Xem chi tiết
Nguyễn Việt Lâm
1 tháng 3 2021 lúc 23:54

\(M=4.\dfrac{a}{2}.\dfrac{b\sqrt{3}}{2}+a^2\le2\left(\dfrac{a^2}{4}+\dfrac{3b^2}{4}\right)+a^2=\dfrac{3}{2}\left(a^2+b^2\right)=\dfrac{3}{2}\)

\(M_{max}=\dfrac{3}{2}\) khi \(\left(a;b\right)=\left(\dfrac{\sqrt{3}}{2};\dfrac{1}{2}\right);\left(-\dfrac{\sqrt{3}}{2};-\dfrac{1}{2}\right)\)

Hoàng Thùy Linh
Xem chi tiết
Ngô Minh Tâm
Xem chi tiết
Trần Hữu Ngọc Minh
6 tháng 10 2017 lúc 0:55

bài 1b

+)Nếu n chẵn ,ta có \(n^4⋮2,4^n⋮2\Rightarrow n^4+4^n⋮2\)

mà \(n^4+4^n>2\)Do đó \(n^4+4^n\)là hợp số

+)nếu n lẻ đặt \(n=2k+1\left(k\in N\right)\)

Ta có \(n^4+4^n=n^4+4^{2k}.4=\left(n^2+2.4k\right)^2-2n^2.2.4^k\)

\(=\left(n^2+2^{2k+1}\right)^2-\left(2.n.2^k\right)^2\)

\(=\left(n^2+2^{2k+1}+2n.2^k\right)\left(n^2+2^{2k+1}-2n.2^k\right)\)

\(=\left(\left(n+2^k\right)^2+2^{2k}\right)\left(\left(n-2^k\right)^2+2^{2k}\right)\)

là hợp số,vì mỗi thừa số đều lớn hơn hoặc bằng 2

(nhớ k nhé)

Trần Hữu Ngọc Minh
6 tháng 10 2017 lúc 0:45

Bài 2a)

Nhân 2 vế với 2 ta có

\(a^4+b^4\ge2ab\left(a^2+b^2\right)-2a^2b^2\)

\(\Leftrightarrow\left(a^2+b^2\right)^2\ge2ab\left(a^2+b^2\right)\)

\(\Leftrightarrow a^2+b^2\ge2ab\Leftrightarrow\left(a-b\right)^2\ge0\)(đúng)

Dẫu = xảy ra khi \(a=b\)

Tuyển Trần Thị
6 tháng 10 2017 lúc 18:35

dat a+b=x b+c=y c+a=z \(\Rightarrow\) dt tro thanh \(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}=2\)

\(\Rightarrow\frac{1}{x+1}=1-\frac{1}{y+1}+1-\frac{1}{z+1}=\frac{y}{y+1}+\frac{z}{z+1}\) \(\ge2\sqrt{\frac{yz}{\left(y+1\right)\left(z+1\right)}}\) (bdt amgm)

tuong tu \(\frac{1}{y+1}\ge2\sqrt{\frac{xz}{\left(x+1\right)\left(z+1\right)}}\) \(\frac{1}{z+1}\ge2\sqrt{\frac{xy}{\left(x+1\right)\left(y+1\right)}}\)

\(\frac{\Rightarrow1}{x+1}.\frac{1}{y+1}.\frac{1}{z+1}\ge2\sqrt{\frac{yz}{\left(y+1\right)\left(z+1\right)}}.2\sqrt{\frac{xz}{\left(z+1\right)\left(x+1\right)}}.2\sqrt{\frac{xy}{\left(x+1\right)\left(y+1\right)}}\)

                =\(8.\frac{xyz}{\left(x+1\right)\left(y+1\right)\left(z+1\right)}\)

\(\Rightarrow xyz\le\frac{1}{8}\)dau = xay ra khi x=y=z=1/2 hay a=b=c=1/4

Hoàng Huy Nguyễn
Xem chi tiết
buidiemquynh
Xem chi tiết
Akai Haruma
16 tháng 4 2023 lúc 23:32

Lời giải:
Áp dụng BĐT Cô-si:

$a^2+b^2\geq 2\sqrt{a^2b^2}=2|ab|\geq 2ab$

$b^2+c^2\geq 2bc$

$c^2+a^2\geq 2ac$

Cộng theo vế các BĐT trên ta được:

$2(a^2+b^2+c^2)\geq 2(ab+bc+ac)$

$\Rightarrow ab+bc+ac\leq a^2+b^2+c^2=27$

Vậy GTLN của $P$ là $27$
 

Phung Ngoc Tam
Xem chi tiết
Đào Thu Hoà
27 tháng 4 2019 lúc 23:08

\(\left(a+b+c\right)^2\le3\left(a^2+b^2+c^2\right).\)(áp dụng bất đẳng thức bunhiacopxki)

\(\Leftrightarrow\left(a+b+c\right)^2\le3.64\Rightarrow\left(a+b+c\right)\le8\sqrt{3}\)

Lại có \(\left(ab+bc+ac\right)^2\le\left(a^2+b^2+c^2\right)\left(a^2+b^2+c^2\right)\)(bất đẳng thức bunhiacopxki)

\(\Leftrightarrow ab+bc+ac\le a^2+b^2+c^2=64\)

Khi đó \(P=ab+bc+ca+a+b+c\le64+8\sqrt{3}\)

Dấu = xảy ra khi \(\hept{\begin{cases}a=b=c\\a^2+b^2+c^2=64\end{cases}\Leftrightarrow}a=b=c=\frac{8\sqrt{3}}{3}\)

nguyen dang nhat minh
Xem chi tiết
Nguyễn Hưng Phát
13 tháng 6 2016 lúc 8:46

Từ đề bài suy ra:\(\frac{a,b}{a+b}=\frac{1}{2}\)

\(\Rightarrow a,b.2=a+b\)

\(\Rightarrow2a+0,b.2=a+b\)

\(\Rightarrow2a-a=b-0,2.b\)

\(\Rightarrow a=b\left(1-0,2\right)\)

\(\Rightarrow a=\frac{4}{5}b\)

\(\Rightarrow\frac{a}{b}=\frac{4}{5}\)

\(\Rightarrow a=4,b=5\)