Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
myyyy
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 11 2023 lúc 19:19

a: \(y=-\dfrac{1}{3}x^3-mx^2+4x+2021m\)

=>\(y'=-\dfrac{1}{3}\cdot3x^2-m\cdot2x+4\)

=>\(y'=-x^2-2m\cdot x+4\)

Để hàm số nghịch biến trên R thì \(y'< =0\forall x\)

=>\(\left\{{}\begin{matrix}\text{Δ}< =0\\a< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(-2m\right)^2-4\cdot\left(-1\right)\cdot4< =0\\-1< 0\end{matrix}\right.\)

=>\(4m^2+16< =0\)

mà \(4m^2+16>=16>0\forall m\)

nên \(m\in\varnothing\)

b: \(y=-\dfrac{1}{3}\cdot x^3-\dfrac{1}{2}\cdot m\cdot x^2+x+20\)

=>\(y'=-\dfrac{1}{3}\cdot3x^2-\dfrac{1}{2}\cdot m\cdot2x+1\)

=>\(y'=-x^2-m\cdot x+1\)

Để hàm số nghịch biến trên R thì \(y'< =0\forall x\)

=>\(\left\{{}\begin{matrix}\text{Δ}< =0\\a< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(-m\right)^2-4\cdot\left(-1\right)\cdot1< =0\\-1< 0\end{matrix}\right.\)

=>\(m^2+4< =0\)

mà \(m^2+4>=4>0\forall m\)

nên \(m\in\varnothing\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
24 tháng 3 2018 lúc 7:43

Chọn D

Tập xác định: .

Đạo hàm: .

.

Bảng biến thiên:

Hàm số đồng biến trên các khoảng .

Do đó hàm số nghịch biến trên khoảng .

Đạm Đoàn
Xem chi tiết
Nguyễn Lê Phước Thịnh
8 tháng 9 2021 lúc 23:28

a: Để hàm số nghịch biến thì 1-2m<0

hay \(m>\dfrac{1}{2}\)

b: Để hàm số nghịch biến thì m-1<0

hay m<1

c: Để hàm số nghịch biến thì \(\dfrac{m-5}{m}>0\)

hay \(\left[{}\begin{matrix}m>5\\m< 0\end{matrix}\right.\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
2 tháng 7 2019 lúc 4:26

Đáp án D

Phương pháp: +) Khảo sát sự biến thiên của đồ thị hàm số.

+) Hàm số đạt cực trị tại điểm x = x 0 ⇔ y ' x 0 = 0 và x = x 0  được gọi là điểm cực trị.

+) Hàm số đạt cực trị tại điểm x = x 0 thì  y x 0 là giá trị cực trị.

Như vậy có 3 mệnh đề đúng.

Chú ý: Học sinh thường giá trị cực trị và

 điểm cực trị nên có thể chọn sai mệnh dề (2) đúng.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
22 tháng 4 2019 lúc 6:05

Đáp án B

myyyy
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 11 2023 lúc 19:34

a: \(y=-x^3-\left(m+1\right)x^2+3\left(m+1\right)x\)

=>\(y'=-3x^2-\left(m+1\right)\cdot2x+3\left(m+1\right)\)

=>\(y'=-3x^2+x\cdot\left(-2m-2\right)+\left(3m+3\right)\)

Để hàm số nghịch biến trên R thì \(y'< =0\forall x\)

=>\(\left\{{}\begin{matrix}\text{Δ}< =0\\a< 0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\left(-2m-2\right)^2-4\cdot\left(-3\right)\left(3m+3\right)< =0\\-3< 0\end{matrix}\right.\)

=>\(4m^2+8m+4+12\left(3m+3\right)< =0\)

=>\(4m^2+8m+4+36m+36< =0\)

=>\(4m^2+44m+40< =0\)

=>\(m^2+11m+10< =0\)

=>\(\left(m+1\right)\left(m+10\right)< =0\)

TH1: \(\left\{{}\begin{matrix}m+1>=0\\m+10< =0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m>=-1\\m< =-10\end{matrix}\right.\)

=>\(m\in\varnothing\)

TH2: \(\left\{{}\begin{matrix}m+1< =0\\m+10>=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m< =-1\\m>=-10\end{matrix}\right.\)

=>-10<=m<=-1

b: \(y=-\dfrac{1}{3}x^3+mx^2-\left(2m+3\right)x\)

=>\(y'=-\dfrac{1}{3}\cdot3x^2+m\cdot2x-\left(2m+3\right)\)

=>\(y'=-x^2+2m\cdot x-\left(2m+3\right)\)

Để hàm số nghịch biến trên R thì \(y'< =0\forall x\)

=>\(\left\{{}\begin{matrix}\text{Δ}< =0\\a< 0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}-1< 0\\\left(2m\right)^2-4\cdot\left(-1\right)\cdot\left(-2m-3\right)< =0\end{matrix}\right.\)

=>\(4m^2+4\left(-2m-3\right)< =0\)

=>\(m^2-2m-3< =0\)

=>(m-3)(m+1)<=0

TH1: \(\left\{{}\begin{matrix}m-3>=0\\m+1< =0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m>=3\\m< =-1\end{matrix}\right.\)

=>\(m\in\varnothing\)

TH2: \(\left\{{}\begin{matrix}m-3< =0\\m+1>=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m< =3\\m>=-1\end{matrix}\right.\)

=>-1<=m<=3

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
1 tháng 3 2017 lúc 10:07

Chọn đáp án D.

Do đó để phương trình f sin x = m có nghiệm trong khoảng (0;p)

thì phương trình  f t = m có nghiệm t ∈ ( 0 ; 1 ]  

Quan sát đồ thị thấy phương trình  f t = m  có nghiệm  t ∈ ( 0 ; 1 ]  khi  - 1 ≤ m < 1

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
31 tháng 1 2017 lúc 16:24

Đáp án là C

MiMi VN
Xem chi tiết