tính giá trị P = \(\frac{x+2a}{x-2a}+\frac{x+2b}{x-2b}\) với \(x=\frac{4ab}{a+b}\)
Tính giá trị biểu thức
Q= ( x -a / x - b )3 - x2 - 2a + b / x + a -2b với x= a + b /2
P=x + 2a / x - 2a + x + 2b / x - 2b với x = 4ab / a +b
\(Cho:\frac{2y+2z-x}{a}=\frac{2z+2x-y}{b}=\frac{2x+2y-z}{c};trongđó:a,b,c,2b+2c-a,2c+2a-b,2a+2b-c\ne0.cmr:\frac{x}{2b+2c-a}=\frac{y}{2c+2a-b}=\frac{z}{2a+2b-c}\)
Cho \(\frac{2y+2z-x}{a}=\frac{2z+2x-y}{b}=\frac{2x+2y-z}{c}\) với a, b,c khác 0; 2a+2b khác c; 2b+2c khác a; 2c+2a khác b.
CM: \(\frac{x}{2b+2c-a}=\frac{y}{2c+2a-b}=\frac{z}{2a+2b-c}\)
Cho :
\(\frac{2y+2z-x}{a}=\frac{2z+2x-y}{b}=\frac{2x+2y-z}{c}\) Với a,b,c khác o ; 2a + 2b khác c ; 2b = 2c khác a : 2b + 2c khác b CHỨNG MINH :\(\frac{x}{2b+2c-a}=\frac{y}{2c+2a-b}=\frac{z}{2a+2b-c}\)
Cho f(x) = x3 - 5x + 1 có 3 nghiệm phân biệt a, b, c. Tính :
\(T=\frac{a}{4bc-2a+1}+\frac{b}{4ca-2b+1}+\frac{c}{4ab-2c+1}\)
1,cho\(\frac{2y+2z-x}{a}=\frac{2z+2x-y}{b}=\frac{2x+2y-z}{c}\)
CMR:\(\frac{x}{2b+2c-a}=\frac{y}{2c+2a-b}=\frac{z}{2a+2b-c}\)
1,cho\(\frac{2y+2z-x}{a}=\frac{2z+2x-y}{b}=\frac{2x+2y-z}{c}\)
CMR:\(\frac{x}{2b+2c-a}=\frac{y}{2c+2a-b}=\frac{z}{2a+2b-c}\)
cậu thử biến đổi mẫu của phấn số cho thành mẩu của từng phân số cần cm (3 lần áp dụng tính chất dãy tỉ số bằng nhau nhé)
Cho a,b,c là các số thực khác 0 thỏa mãn. Tính giá trị biểu thức:
\(P=\frac{a^2c}{a^2c+c^2b+b^2a}+\frac{b^2a}{b^2a+a^2c+c^2b}+\frac{c^2b}{c^2b+b^2a+a^2c}\)
P = \(\frac{a^2c}{a^2c+c^2b+b^2a+}+\frac{b^2a}{b^2a+a^2c+c^2b}+\frac{c^2b}{c^2b+b^2a+a^2c}\)
P = \(\frac{a^2c+b^2a+c^2b}{a^2c+c^2b+b^2a}=1\)
\(P=\frac{\frac{a}{b}}{\frac{a}{b}+\frac{c}{a}+\frac{b}{c}}+\frac{\frac{b}{c}}{\frac{b}{c}+\frac{a}{b}+\frac{c}{a}}+\frac{\frac{c}{a}}{\frac{c}{a}+\frac{b}{c}+\frac{a}{b}}=\frac{\frac{a}{b}+\frac{b}{c}+\frac{c}{a}}{\frac{a}{b}+\frac{b}{c}+\frac{c}{a}}=1\)
Cho a,b,c là 3 nghiệm của đa thức \(f\left(x\right)=x^3-3x+1\).Tính giá trị biểu thức:
\(A=\frac{1+2a}{1+a}+\frac{1+2b}{1+b}+\frac{1+2c}{1+c}\)
\(A=\frac{1+2a}{1+a}+\frac{1+2b}{1+b}+\frac{1+2c}{1+c}\)
\(=2-\frac{1}{1+a}+2-\frac{1}{1+b}+2-\frac{1}{1+c}=6-\left(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}\right)\)
Xét \(f\left(x\right)=0\)có 3 nghiệm a; b ; c
Theo định lí viet ta có:
\(a+b+c=0\)
\(ab+bc+ac=-3\)
\(abc=-1\)
=> \(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}=\frac{1+bc+b+c+1+ac+a+c+1+ab+a+b}{1+ab+a+b+c+abc+ab+ac}\)
\(=\frac{3+\left(ab+ac+bc\right)+2\left(a+b+c\right)}{1+\left(ab+ac+bc\right)+\left(a+b+c\right)+abc}=\frac{3-3+0}{1-3+0-1}=0\)
=> \(A=\)\(6-\left(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}\right)\)= 6 - 0 = 6.
Anh học phổ thông mà hỏi câu lớp 8 là sao?
Kingweeaboo Bạn ấy mới học lớp 7 thôi mà
Dạng này trước xuất hiện trong đề thi toán tuổi thơ rồi nè,để mình làm cách khác bạn tham khảo thêm nha !
Chứng minh viét bạn tự chứng minh,hệ số bất định thôi nhé !
Ta có:\(a^3-3a+1=0\Leftrightarrow3a=a^3+1\Leftrightarrow\left(a+1\right)\left(a^2-a+1\right)=3a\)
\(\Rightarrow a+1=\frac{3a}{a^2-a+1}\)
\(A=\frac{1+2a}{1+a}+\frac{1+2b}{1+b}+\frac{1+2c}{1+c}\)
\(=3+\left(\frac{a}{a+1}+\frac{b}{b+1}+\frac{c}{c+1}\right)\)
Ta có:
\(\frac{a}{a+1}=\frac{a\left(a^2-a+1\right)}{3a}=\frac{a^2-a+1}{3}\)
Khi đó:\(A=\frac{a^2+b^2+c^2-\left(a+b+c\right)+3}{3}\)
\(=\frac{\left(a+b+c\right)^2-2\left(ab+bc+ca\right)-\left(a+b+c\right)+3}{3}\)
Áp dụng viét vào là ra nhe