Đồ thị hàm số y=x\(^3\)-2mx\(^2\)+4mx-6 đi qua bao nhiêu điểm cố định với mọi giá trị của tham số m
Cho hàm số y= (m-1)x + m +3
1) Tìm giá trị của m để đồ thị của hàm số song song với đồ thị hàm số y= -2x + 1.
2) Tim giá trị của m để đồ thị của hàm số đi qua điểm (1; -4).
3) Tìm điểm cố định mà đồ thị của hàm số luôn đi qua với mọi m.
4) Tim giá trị của m để đồ thị của hàm số tạo với trục tung và trục hoành một tam giác có diện tích bằng 1 (đvdt).
Vì hs y = (m-1)x +m +3 đi qua điểm (1; -4) nên ta đc :
-4 = (m-1) + m+3
<=> -4 = 2m + 2
<=> m =-3
1) Đặt tên cho dễ giải nè:
(d1) : y= (m-1) x + m+ 3
(d2) : y = -2x + 1
(d1) // (d2) <=> m - 1 = -2 và m+ 3 \(\ne\)1
<=> m = -1 và m \(\ne\)-2
1. để đồ thị của hàm số \(y=\left(m-1\right)x+m+3\) // với \(y=-2x+1\),
\(\left\{{}\begin{matrix}m-1=-2\\m+3\ne1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=-1\\m\ne-2\end{matrix}\right.\)
2. để đi qua điểm (1;-4),
\(-4=m-1+m+3\\ \Leftrightarrow-4=2m+2\Leftrightarrow m=-3\)
3. \(y=\left(m-1\right)x+m+3\\ \Leftrightarrow x+y=mx+m+3\\ \Leftrightarrow x+y-3=m\left(x+1\right)\)
tọa độ điểm cố định là nghiệm của hpt
\(\left\{{}\begin{matrix}x+y-3=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=4\end{matrix}\right.\)
đ cđịnh M(-1;4)
4. \(y=\left(m-1\right)x+m+3\)
+ Khi x=0, y=m+3
+ khi y=0, \(x=\dfrac{-m-3}{m-1}\)
Để \(S=1\Rightarrow\dfrac{-m-3}{m-1}.\left(m+3\right)=2\\ \Leftrightarrow\left(m+3\right)^2=2\left(1-m\right)\\ \Leftrightarrow m^2+8m+7=0\Leftrightarrow\left(m+1\right)\left(m+7\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-7\end{matrix}\right.\)
Bài 1 :Cho hàm số y=(m-1)x+m+3
1, Tìm giá trị của m để đồ thị hàm số song song với đồ thị hàm số y=-2x+1
2, Tìm giá trị của m để đồ thị hàm số đi qua điểm (1;-4)
3, Tìm điểm cố định mà đồ thị của hàm số luôn đi qua\
Bài 2 : Cho hàm số y=(2m-1)x+m-3
1, Tìm m để đồ thị hàm số đi qua điểm (2;5)
2, Cmr đồ thị hàm số luôn đi qua 1 điểm cố định với mọi m. Tìm điểm cố định ấy
3, Tìm m để đồ thị hàm số cắt trục hoành tai điểm có hoành độ \(x=\sqrt{2}-1\)
Bài 1: Cho hàm số bậc nhất y=(m-1)x+m+3.(d)
a)Tìm giá trị của m để đồ thị của hàm số song song với đồ thị hàm số y = - 2x + 1 .
b) Tìm giá trị của m để đồ thị của hàm số đi qua điểm (1;-4) .
c) Tìm điểm cố định mà đồ thị của hàm số luôn đi qua với mọi m
d) Tìm giá trị của m để đổ thị của hàm số tạo với trục tung và trục hoành một tamgiác có diện tích bằng 1(đvdt ).
Cho hàm số y=(m-1)x +m+3
Tìm giá trị của m để đồ thị của hàm số song song với đồ thị hàm số y=-2x+1Tìm giá trị của m để đồ thị của hàm số đi qua diieemr (1;-4)Tìm điểm cố định mà đồ thị của hàm số luôn đi qua với mọi m.1. Để đồ thị của hàm số y=(m-1)x+m+3 song song với đồ thị hàm số y=-2x+1 thì:
\(\left\{{}\begin{matrix}m-1=-2\\m+3\ne1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=-1\\m\ne-2\end{matrix}\right.\)
Vậy để 2 đồ thị trên song song với nhau thì m=-1 và m\(\ne\)-2
2. Vì đồ thị đi qua điểm (1;-4) nên ta có:
-4=m-1+m+3
\(\Leftrightarrow\) 2m=-6
\(\Leftrightarrow m=-3\)
Vậy để đồ thị đi qua điểm (1;-4) thì m=-3
cho hàm số: y = (m+2)x-m-1 có đồ thị là đường thẳng (d) với m là tham số. CM đường thẳng (d) luôn đi qua 1 điểm cố định với mọi giá trị của m
y = (m+2)x -m-1 <=> mx + 2x -m - 1 -y = 0
<=>mx - m =0 <=> m(x-1) = 0 => m vô số nghiệm hoặc x = 1 thế x =1
2x -1 - y = 0 <=> 2-1 =y => y= 1
Vậy d luôn đi qua một điểm cố định (1;1) với mọi giá trị m
Tìm điểm cố định
Bước 1 chuyển các số hạng chứa tham số về 1 vế các số hạng không chứa tham số về vế còn lại
Bước 2 Đặt tham số đó làm thừa số chung
Bước 3 Bỏ tham số cho từng vế = 0 để giải
Ví dụ
Bước 1 y=(m-1)x+m <=> x+y = m x+m
Bước 2 x+y = m(x+1)
Bước 3 Tọa độ điểm cố định là nghiệm hệ phương trình
x+y = 0
x+1 = 0
<=> x= -1 => y =1
M(-1;1)
y=(2m-1)x + m- 2 <=> x+y +2 = m(2x+1)
Tọa độ điểm cố định là nghiệm hệ phương trình
x+y +2 = 0
(2x+1) = 0 => x = -1/2 => y = -3/2
Chúc Học giỏi nhé
Cho hàm số y=(m-1)x+m+3
a) Tìm giá trị của m để đồ thị hàm số song song với đồ thị hàm số y=-2x+1
b) Tìm gtrị của m để đồ thị của hàm số đi qua điểm (1;-4)
c) Tìm điểm cố định mà đồ thị của hàm số luôn đi qua với mọi m
d) Tìm giá trị của m để đồ thị của hàm số tạo với trục tung và trục hoành một tam giác có diện tích bằng 1(đvdt)
a) y=(m-1)x+m+3 (d1) (a=m-1;b=m+3)
y=-2x+1 (d2) (a' =-2;b' =1)
vì hàm số (d1) song song với hàm số (d2) nên
\(\hept{\begin{cases}a=a'\\b\ne b'\end{cases}}\Leftrightarrow\hept{\begin{cases}m-1=-2\\m+3\ne1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}m=-1\\m\ne-2\end{cases}}\)
vậy với m= -1 thì hàm số (d1) song song với hàm số (d2)
b) vì hàm số (d1) đi qua điểm (1;-4) nên
x=1 ; y= -4
thay vào (d1) ta có
-4=m-1+m+3 (mình làm tắt ko nhân với 1 nha)
-4=2m+2
-2=2m
m=-1
cho hàm số y = x² + (2m - 3)x + 5 - 4m. chứng minh rằng với mọi giá trị của m đồ thị p(m) của hàm số đã cho và đường thẳng d(m) y = 2mx - 4m + 3 luôn có một điểm chung cố định
Phương trình hoành độ giao điểm là:
\(x^2+\left(2m-3\right)x+5-4m=2mx-4m+3\)
=>\(x^2+\left(2m-3\right)x+5-4m-2mx+4m-3=0\)
=>\(x^2+x\left(2m-3-2m\right)+5-4m+4m-3=0\)
=>\(x^2-3x+2=0\)
=>\(\left(x-1\right)\left(x-2\right)=0\)
=>\(\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
Khi x=1 thì \(y=2m\cdot1-4m+3=2m-4m+3=-2m+3\)
Khi x=2 thì \(y=2m\cdot2-4m+3=3\)
Vậy: (dm) và (P) luôn cắt nhau tại điểm A(2;3) cố định
Cho hàm số y = ( 2m+2)x + m - 1. Tìm điểm cố định mà đồ thị hàm số luôn đi qua với mọi giá trị của m.
Giải chi tiết hộ mình nha
`y=(2m+2)x+m-1`
`<=>2mx+2x+m-1-y=0`
`<=>(2x+1)m+(2x-y-1)=0`
\(\Rightarrow\left\{{}\begin{matrix}2x+1=0\\2x-y-1=0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{2}\\y=-2\end{matrix}\right.\)
Vậy điểm cố định là: `(-1/2 ; -2)`.
Gọi điểm \(A\left(x_0,y_0\right)\) là điểm cố định mà đồ thị hàm số đi qua
\(\Rightarrow y_0=\left(2m+2\right)x_0+m-1\Rightarrow2mx_0+2x_0+m-1-y_0=0\)
\(\Rightarrow m\left(2x_0+1\right)+2x_0-y_0-1=0\Rightarrow\left\{{}\begin{matrix}2x_0+1=0\\2x_0-y_0-1=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x_0=-\dfrac{1}{2}\\y_0=-2\end{matrix}\right.\)
\(\Rightarrow\) đồ thị hàm số luôn đi qua điểm \(A\left(-\dfrac{1}{2};-2\right)\)
cho HÀM số y= (m-2)x +m+ 3 coa đồ thị là đường thẳng d
a) chứng minh d luôn đi qua một điểm cố định với mọi giá trị của tham số m
b) tìm m để d cắt Ox, Oy tạo thành tam giác có diện tích bằng 2
a) \(\left(d\right):y=\left(m-2\right)x+m+3\)
Gọi \(A\left(x_o;y_o\right)\) là điểm cố định mà \(\left(d\right)\) đi qua, nên ta có :
\(y_o=\left(m-2\right)x_o+m+3,\forall m\in R\)
\(\Leftrightarrow y_o=mx_o-2x_o+m+3,\forall m\in R\)
\(\Leftrightarrow mx_o+m+2x_o+y_o-3=0,\forall m\in R\)
\(\Leftrightarrow\left(x_o+1\right)m+\left(2x_o+y_o-3\right)=0,\forall m\in R\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_o+1=0\\2x_o+y_o-3=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_o=-1\\y_o=5\end{matrix}\right.\) \(\Rightarrow A\left(-1;5\right)\)
Vậy Với mọi m, đường thẳng \(\left(d\right)\) luôn đi qua điểm cố định \(A\left(-1;5\right)\)
b) Gọi \(\left\{{}\begin{matrix}\left(d\right)\cap Ox=A\\\left(d\right)\cap Oy=B\end{matrix}\right.\)
Tọa độ điểm \(A\) thỏa mãn
\(\Leftrightarrow\left\{{}\begin{matrix}y=0\\y=\left(m-2\right)x+m+3\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{m+3}{2-m}\\y=0\end{matrix}\right.\)
\(\Rightarrow A\left(\dfrac{m+3}{2-m};0\right)\)
\(\Rightarrow OA=\sqrt[]{\left(\dfrac{m+3}{2-m}\right)^2}=\left|\dfrac{m+3}{2-m}\right|\)
Tọa độ điểm \(B\) thỏa mãn
\(\Leftrightarrow\left\{{}\begin{matrix}y=\left(m-2\right)x+m+3\\x=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=m+3\end{matrix}\right.\) \(\Rightarrow B\left(0;m+3\right)\)
\(\Rightarrow OB=\sqrt[]{\left(m+3\right)^2}=\left|m+3\right|\)
\(S_{OAB}=2\Leftrightarrow\dfrac{1}{2}OA.OB=2\)
\(\Leftrightarrow\left|\dfrac{m+3}{2-m}\right|.\left|m+3\right|=4\)
\(\Leftrightarrow\left(m+3\right)^2=4\left|2-m\right|\left(1\right)\)
\(TH1:2-m>0\Leftrightarrow m< 2\)
\(\left(1\right)\Leftrightarrow\left(m+3\right)^2=4\left(2-m\right)\)
\(\Leftrightarrow m^2+6m+9=8-4m\)
\(\Leftrightarrow m^2+10m+1=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m=-5+2\sqrt[]{6}\left(tm\right)\\m=-5-2\sqrt[]{6}\left(tm\right)\end{matrix}\right.\)
\(TH2:2-m< 0\Leftrightarrow m>2\)
\(\left(1\right)\Leftrightarrow\left(m+3\right)^2=4\left(m-2\right)\)
\(\Leftrightarrow m^2+6m+9=4m-8\)
\(\Leftrightarrow m^2+2m+17=0\)
\(\Leftrightarrow\) Phương trình vô nghiệm
Vậy \(\left[{}\begin{matrix}m=-5+2\sqrt[]{6}\\m=-5-2\sqrt[]{6}\end{matrix}\right.\) thỏa mãn đề bài