A=9/1*2+9/2*3+9/3*4+...9/96*99+9/99*100
A=9/1*2+9/2*3+9/3*4+...9/96*99+9/*100
Giải:
\(A=\dfrac{9}{1.2}+\dfrac{9}{2.3}+\dfrac{9}{3.4}+...+\dfrac{9}{98.99}+\dfrac{9}{99.100}\)
\(A=9.\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{98.99}+\dfrac{1}{99.100}\right)\)
\(A=9.\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+....+\dfrac{1}{99}-\dfrac{1}{100}\right)\)
\(A=9.\left(1-\dfrac{1}{100}\right)\)
\(A=9.\dfrac{99}{100}\)
\(A=\dfrac{891}{100}\)
A = 9/1*2+9/2*3+9/3*4+...+9/98*99+9/99*100
A=9/1.2+9/2.3+9/3.4+.....+9/98.99+9/99.100
=9.(1/1.2+1/2.3+1/3.4+....+1/98.99+1/99.100
=9.(1/1-1/2+1/2-1/3+1/3-1/4+...+1/98-1/99+1/99-1/100)
=9.(1/1-1/100)
=9.99/100
=891/100
CHÚC BẠN HỌC TỐT!
\(A=9.\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\right)\)
\(=9.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\right)\)
\(=9.\left(1-\frac{1}{100}\right)\)
\(=9.\frac{99}{100}\)
\(=\frac{891}{100}\)
A=9/1.2+9/2.3+9/3.4+.....+9/98.99+9/99.100
=9.(1/1.2+1/2.3+1/3.4+....+1/98.99+1/99.100
=9.(1/1-1/2+1/2-1/3+1/3-1/4+...+1/98-1/99+1/99-1/100)
=9.(1/1-1/100)
=9.99/100
=891/100
1, tính nhanh
a, 100 - 99 + 98 - 97 + 96 - 95 + ... + 4 - 3 + 2
b, 100 - 5 - 5 - ... - 5 ( có 20 chữ số 5 )
c, 99 - 9 - 9 - ... - 9 ( có 11 chữ số 9 )
d, 2011 + 2011 + 2011 + 2011 - 2008 x 4
a) 100 - 99 + 98 -97 + 96 -95 +...+ 4-3 + 2
= (100 - 99) + (98 -97) + (96 - 95) +...+ (4-3) +2 (gồm 49 cặp và 1 số hạng)
= 1+1+1+....+1 +2
= 49 x 1 + 2 = 51
b) 100 - 5-...-5 - 5 (20 số 5)
= 100 - 20 x 5 = 0
c) 99 - 9 - 9 -... - 9 -9 (11 số 9)
=99 - 11 x 9 = 0
d) 2011 + 2011+2011+2011 - 2008 x 4
= 2011 x 4 - 2008 x 4
= 4 x (2011 - 2008)
= 4 x 3
=12
Cho A=9/1×2+9/2×3+9/3×4+...+9/98×99+9/99×100
Giải:
\(A=\dfrac{9}{1.2}+\dfrac{9}{2.3}+\dfrac{9}{3.4}+...+\dfrac{9}{98.99}+\dfrac{9}{99.100}\)
\(\Leftrightarrow A=9\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{98.99}+\dfrac{1}{99.100}\right)\)
\(\Leftrightarrow A=9\left(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{98}-\dfrac{1}{99}+\dfrac{1}{99}-\dfrac{1}{100}\right)\)
\(\Leftrightarrow A=9\left(\dfrac{1}{1}-\dfrac{1}{100}\right)\)
\(\Leftrightarrow A=9.\dfrac{99}{100}\)
\(\Leftrightarrow A=\dfrac{891}{100}\)
Vậy ...
1/2 + 2/3 + 3/4 + 4/5 + 5/6 + 6/7 + 7/8 + 8/9 + ........+ 95/96 + 96/97 + 97/98 + 98/99 + 99/100 = ?
Số các số hạng là:
(2000 - 100) : 1 + 1 = 1901
Tổng là:
(2000 + 100) x 1901 : 2 = 1996050
Đáp số : 1996050
= [(2000-100)+1]: 2 x (2000+100)= 1996050
Tổng số các số hạng là :
( 2 000 - 100 ) : 1 + 1 = 1 901 ( số hạng )
Tổng của dãy số trên là :
( 2 000 + 100 ) x 1 901 : 2 = 1 996 050
Đáp số : 1 996 050
ủng hộ mk nha các bn ^-^
So sánh A và B biết : A= 1+7+7^2 +......+7^100 / 1 + 7 + 7^2 +..... +7^99 ; B = 1 + 9 + 9^2 + 9^3 +......+9^100 / 1+9+9^2+9^99
Tính giá trị biểu thức:
B= 9/ 1. 2- 9/ 2. 3- 9/ 3. 4..... - 9/ 98. 99- 9/ 99. 100
\(\frac{9}{1.2}+\frac{9}{2.3}+\frac{9}{3.4}+...+\frac{9}{99.100}\)
=\(9.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\right)\)
=\(9.\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\right)\)
=\(9.\left(\frac{1}{1}-\frac{1}{100}\right)\)
=\(9.\frac{99}{100}\)
=\(\frac{891}{100}\)
A=9/1×2+9/2×3+....+9/98×99+9/99×100. Tính A
\(A=9\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\right)\)
\(A=9\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\right)\)
\(A=9\left(1-\frac{1}{100}\right)\)
\(A=9\times\frac{99}{100}\)
\(A=\frac{891}{100}\) hoặc 8,91
\(A=9.\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{98.99}+\frac{1}{99.100}\right)\)
A=\(9.\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\right)\)
\(A=9.\left(1-\frac{1}{100}\right)=\frac{891}{100}\)
so sánh
P=\(\dfrac{1+7^2+7^3+...+7^{100}}{1+7^2+7^3+...+7^{99}}\)
Q=\(\dfrac{1+9^2+9^3+...+9^{100}}{1+9^2+9^3+...+9^{99}}\)