Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Bui Cam Lan Bui
Xem chi tiết
Trần Thị Loan
1 tháng 10 2015 lúc 8:54

P = x4.y+ x+ y+ 1 

Ta có: x+ y= (x + y)- 2xy = 10 - 2xy => x+ y= (x+ y2)2 - 2x2y2 = (10 - 2xy)2 - 2(xy)2 = 100 - 40xy + 2(xy)2

=> P = (xy)4 + 2(xy)2 - 40xy + 101 = [(xy)4 - 8(xy)+ 16] + 10.[(xy)2 - 4xy + 4] + 45 = [(xy)2 - 4]+ 10.(xy - 2)2 + 45

=> P > 45 

Dấu "=" xảy ra <=> xy = 2 

Mà có x + y = \(\sqrt{10}\) => x = \(\sqrt{10}\) - y => xy = \(\sqrt{10}\)y - y2 = 2 => y\(\sqrt{10}\).y + 2 = 0 

\(\Delta\) = 10 - 8 = 2 => \(y=\frac{\sqrt{10}+\sqrt{2}}{2}\)=> x = \(\frac{4}{\sqrt{10}+\sqrt{2}}=\frac{\sqrt{10}-\sqrt{2}}{2}\)

vậy  P nhỏ nhất bằng 45 khi x = \(\frac{\sqrt{10}-\sqrt{2}}{2}\)\(y=\frac{\sqrt{10}+\sqrt{2}}{2}\)

 

Namikaze Minato
Xem chi tiết
Nguyễn Thị Huyền Diệp
Xem chi tiết
Nguyễn Hoàng Minh
8 tháng 11 2021 lúc 16:25

TK: Tìm Min (x^4 + 1) (y^4 + 1) với x + y = căn10 ; x , y > 0 - Thanh Truc

Khả Nhi
Xem chi tiết

\(P=\left(x^4+1\right)\left(y^4+1\right)=x^4y^4+x^4+y^4+1\)

Ta có \(x^2+y^2=\left(x+y\right)^2-2xy=10-2xy\)

\(\Rightarrow x^4+y^4=\left(x^2+y^2\right)^2-2x^2y^2=\left(10-2xy\right)^2-2x^2y^2=100-40xy+2x^2y^2\)

\(\Rightarrow P=\left(xy\right)^4+101-40xy+2x^2y^2\)

\(=\left[\left(xy\right)^4-8\left(xy\right)^2+16\right]+10\left[\left(xy\right)^2-4xy+4\right]+45\)

\(=\left(x^2y^2-4\right)^2+10\left(xy-2\right)^2+45\)

\(\Rightarrow P\ge45\)

Dấu "=" xảy ra khi xy=2

Lại có \(x+y=\sqrt{10}\)

\(\Rightarrow x=\sqrt{10}-y\Rightarrow xy=\sqrt{10}y-y^2=2\)

\(\Rightarrow y^2-\sqrt{10y}+2=0\)

Ta có \(\Delta=10-8=2\)

\(\Rightarrow y=\frac{\sqrt{10}+\sqrt{2}}{2}\)

\(\Rightarrow x=\frac{4}{\sqrt{10}+\sqrt{2}}=\frac{\sqrt{10}-\sqrt{2}}{2}\)

Vậy giá trị nhỏ nhất của P là 45 khi \(\hept{\begin{cases}x=\frac{\sqrt{10}-\sqrt{2}}{2}\\y=\frac{\sqrt{10}+\sqrt{2}}{2}\end{cases}}\)

Vân Khánh
Xem chi tiết
alibaba nguyễn
17 tháng 11 2016 lúc 20:30

Bài này làm phức tạp nên để khi khác làm

trịnh việt nguyên
Xem chi tiết
Không Tên
13 tháng 3 2020 lúc 13:48

Bài này nhiều bạn đăng rồi, vô lục câu hỏi của CTV Lê Tài Bảo Châu đó, kéo xuống là thấy.

Khách vãng lai đã xóa
trịnh việt nguyên
13 tháng 3 2020 lúc 15:42

cảm ơn bạn

Khách vãng lai đã xóa
zZz Cool Kid_new zZz
13 tháng 3 2020 lúc 20:13

Anh tth trước chỉ em SOS kiểu này nè:)

\(\left(x^4+1\right)\left(y^4+1\right)\)

\(=x^4+y^4+x^4y^4+1\)

\(=\left[\left(x+y\right)^2-2xy\right]^2-2x^2y^2+x^4y^4+1\)

\(=\left(10-2xy\right)^2-2x^2y^2+x^4y^4+1\)

\(=x^4y^4+2x^2y^2-40xy+101\)

\(=\left(x^2y^2-4\right)^2+10\left(xy-2\right)^2+45\ge45\)

Dấu "=" xảy ra tại \(x=-\frac{5}{\sqrt{2}};y=-\frac{5}{2\sqrt{2}}\)

Chắc anh tth bày ko sai đâu !

Khách vãng lai đã xóa
Hung Trieu
Xem chi tiết
Bao Nguyen Trong
Xem chi tiết
Thanh Tùng DZ
14 tháng 2 2020 lúc 20:10

Từ điều kiện suy ra \(\sqrt{xy}+\sqrt{x}+\sqrt{y}\ge3\)

Áp dụng BĐT Cô-si, ta có :

\(3\le\sqrt{xy}+\sqrt{x}.1+\sqrt{y}.1\le\frac{x+y}{2}+\frac{x+1}{2}+\frac{y+1}{2}\)

\(\Rightarrow x+y\ge2\)

Ta có : \(\frac{x^2}{y}+y\ge2\sqrt{\frac{x^2}{y}.y}=2x\)\(\frac{y^2}{x}+x\ge2\sqrt{\frac{y^2}{x}.x}=2y\)

\(\Rightarrow\frac{x^2}{y}+\frac{y^2}{x}+x+y\ge2x+2y\)

\(\Rightarrow P=\frac{x^2}{y}+\frac{y^2}{x}\ge x+y\ge2\)

Vậy GTNN của P là 2 khi x = y = 1

Khách vãng lai đã xóa
vvvvvvvv
Xem chi tiết
Đậu Hũ Kho
18 tháng 4 2021 lúc 16:14

undefined

Nguyễn Việt Lâm
18 tháng 4 2021 lúc 23:00

\(P=\dfrac{1}{x}+\dfrac{4}{4y}\ge\dfrac{\left(1+2\right)^2}{x+4y}=\dfrac{9}{6}=\dfrac{3}{2}\)

Dấu "=" xảy ra khi \(\left(x;y\right)=\left(2;1\right)\)