\(P=\dfrac{1}{x}+\dfrac{4}{4y}\ge\dfrac{\left(1+2\right)^2}{x+4y}=\dfrac{9}{6}=\dfrac{3}{2}\)
Dấu "=" xảy ra khi \(\left(x;y\right)=\left(2;1\right)\)
\(P=\dfrac{1}{x}+\dfrac{4}{4y}\ge\dfrac{\left(1+2\right)^2}{x+4y}=\dfrac{9}{6}=\dfrac{3}{2}\)
Dấu "=" xảy ra khi \(\left(x;y\right)=\left(2;1\right)\)
xét các số thực dương x , y thoả mãn x + 4 = 6 . tìm giá trị nhỏ nhất của biểu thức P = \(\dfrac{1}{x}\) + \(\dfrac{1}{y}\)
gọi (S) là tập hợp các điểm trong mặt phẳng tọa độ có tọa độ thỏa mãn hệ : 2x-y>=2 , x-2y<=2 , x+y>=5 , x>=0 : a) hãy xác định (S) để thấy rằng đó là một miền tam giác ; b) trong (S) , hãy tìm điểm có tọa độ (x,y) làm cho biểu thức f(x,y)=y-x có giá trị nhỏ nhất , biết rằng f(x,y) có giá trị nhỏ nhất tại một trong các đỉnh của (S)
xét hình chiếu vuông góc của điểm P(3,-2) trên đường thẳng (d) trong mỗi trường hợp sau : a) (d) : x=t , y=1 ; b) (d) : x−13x−13=y−4y−4 ; c) 5x-12y+10=0 .
Cho ba điểm A(1;0), B(0;5) và C(-3;-5). Điểm M(x;y) thuộc trục Oy sao cho | 3MA-2MB+4MC | đạt giá trị nhỏ nhất. Tính S= x+y
Trong mặt phẳng với hệ trục tọa độ Oxy cho hình bình hành ABCD có góc ABC nhọn, đỉnh A(-2;-1). Gọi H, K, E lần lượt là hình chiếu vuông góc của A trên các đường thẳng BC, BD, CD. Phương trình đường tròn ngoại tiếp HKE là (C) : \(x^2+y^2+x+4y+3=0\). Tìm tọa độ các đỉnh B, C, D biết H có hoành độ âm, C có hoành độ dương và nằm trên đường thẳng \(x-y-3=0\)
1/Trong mặt phẳng tọa độ Oxy, cho hình chữ nhật ABCD. Đỉnh B thuộc đường thẳng d1: 2x-y+2=0, đỉnh C thuộc đường thẳng d2: x-y-5=0. Gọi H là hình chiếu của B xuống AC, biết M(\(\dfrac{9}{5}\);\(\dfrac{2}{5}\)), K(9;2) lần lượt là trung điểm của AH và CD Tìm tọa độ các đỉnh hình chữ nhật ABCD, biết điểm C có hoành độ lờn hơn 4
2/Trong mặt phẳng tọa độ Oxy, cho tam giác ABC, biết B(\(\dfrac{1}{2}\);1). Đường tròn nội tiếp tam giác ABC tieepa xúc với BC, CA, AB lần lượt tại D,E,F. Biết điểm D(3;1). đường thẳng È:y-3=0. Tìm tọa độ điểm A biết A có tung độ dương
3/ Trong mặt phẳng tọa độ Oxy, choa tam giác ABC cân tại A , D là trung điểm AB . Biết rằng I(\(\dfrac{11}{3}\);\(\dfrac{5}{3}\)); E(\(\dfrac{13}{3}\);\(\dfrac{5}{3}\)) lần lượt là tâm đường tròn ngoại tiếp tam giác ABC , trọng tâm tam giác ADC, các diểm M(3;-1);N(-3;0) lần lượt thuộc các đường thẳng DC, AB.Tìm tọa độ các điểm A,B,C, biết A có tung độ dương
4/ Trong mặt phẳng tọa độ Oxy, hãy viết phương trình các cạnh của tam giác ABC biết trực tâm H(1;0) , chân đường cao hạ từ đinh B là K(0;2), trung điểm cạnh AB là M (3;1)
5/ Trong mặt phẳng tọa độ Oxy, cho tam giác ABC vuông tại C có phân giác trong AD với D (\(\dfrac{7}{2}\);-\(\dfrac{7}{2}\)) thuộc BC . Gọi E,F là hai điểm làn lượt thuộc các cạnh AB, AC sao cho AE=AF. Đường thẳng EF cắt BC taị K.Biết E(\(\dfrac{3}{2}\);-\(\dfrac{5}{2}\)), F có hoành độ nhỏ hơn 3 và phương trình đường thẳng AK : x-2y-3=0. Viết phương trình của các cạnh tam giác ABC.
6/ Trong mặt phẳng tọa độ Oxy, cho đường tròn (C): (x-1)2+(y-1)2 + 25 và các điểm A (7;9), B(0;8). Tìm tọa độ điểm M thuộc (c) sao cho biểu thức P= MA+2MB min
7/ Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có góc BAC =120O , đường cao BH: \(\sqrt{3}\)x+y-2=0. Trung điểm của cạnh BC là M( \(\sqrt{3}\);\(\dfrac{1}{2}\)) và trực tâm H(0;2). Tìm tọa độ các đỉnh B,C của tam giác ABC
8/ Trong mặt phẳng tọa độ Oxy, CHO (C1); x2 + y2-6x+8y+23=0, (C2) : x2 + y2+12x-10y+53=0 và (d) : x-y-1=0. Viết phương trình đường trong (C) có tâm thuộc (d), tiếp xúc trong với (C1), và tiếp xúc ngoài với (C2)
Tìm tất cả các giá trị của m để bất phương trình :
5x6-12x5 +10x3-90x2\(\ge\) m đúng với mọi số thực x
Cho hàm số y = x − (3 m + )1 x + 9x − m 3 2 , với m là tham số thực. 1. Khảo sát sự biến thiên và vẽ ñồ thị của hàm số ñã cho ứng với m = 1. 2. Xác ñịnh m ñể hàm số ñã cho ñạt cực trị tại 1 2 x , x sao cho x1 − x2 ≤ 2 .
Trên mặt phẳng tọa độ Oxy.Tìm tất cả các cặp số (x;y) thỏa mãn:
a)x.(y+1)=0.
b)(x-2).y=0.
c)\(\left(x+2\right)^2\)+\(\left(x+3\right)^2\)=0.