Cho tam giác ABC vuông ở A . có AB < AC , kẻ đường cao AH . I , K lần lượt là hình chiếu của H trên AB , AC
a. CM : IA.IB = KA.KC
b. CM tam giác HBA đồng dạng tam giác ABC
c. Từ A kẻ AE vuông góc IK , AE cắt BC tại D . CM : DB = DC
cho tam giác ABC vuông tại A, đường cao AH.
a, Cm: tam giác ABC đồng dạng tam giác HBA.
b, gọi I,K lần lượt là hình chiếu của H lên AB,AC. Cm: AI.AB=AK.AC
c, Cho BC= 10cm : Ah=4 cm.tính diện tích tam giác AIK
Cho tam giác ABC vuông tại A có AC > AB . Kẻ đường cao AH . Gọi I và K lần lượt là hình chiếu của điểm H trên AB , AC .
a, CMR tam giác HBA đồng dạng với tam giác ABC
b, CM : IA.IB = KA.KC
c, Từ A kẻ AE vuông góc với IK , AE cắt BC tại D . CMR : DB = DC
Giúp mk với mai mk thi rùi !!!
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc HBA chung
Do đó ΔHBA\(\sim\)ΔABC
b: Sửa đề: \(AI\cdot AB=AK\cdot AC\)
Xét ΔAHB vuông tại H có HI là đường cao
nên \(AI\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HK là đường cao
nên \(AK\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AI\cdot AB=AK\cdot AC\)
cho tam giác ABC vuông tại A có AB<AC . Kẻ đường cao AH . E,F lần lượt là hình chiếu của điểm H trên AB và AC.
a/ chứng minh: tam giác ABC đồng dạng với tam giác HBA từ đó suy ra AB^2= BC.CH
b/ Chứng minh: AE.AB=AF.AC
C/Gọi O là trung điểm của BC . Qua H kẻ đường thẳng song song với EF cắt AC tại M. K là giao điểm của AO với HM. Chứng minh: tam giác KAM đồng dạng với tam giác HCA
MỌI NGƯỜI GIÚP MÌNH VỚI Ạ!!!
a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
=>ΔABC đồng dạng vơi ΔHBA
=>BA/BH=BC/BA
=>BA^2=BH*BC
b: ΔAHB vuông tại H có HE là đường cao
nên AE*AB=AH^2
ΔAHC vuông tại H có HF là đường cao
nên AF*AC=AH^2
=>AE*AB=AF*AC
Cho tám giác ABC vuông tại A, đường cao AH. Kẻ HE,HF lần lượt vuông góc AB,AC.
a) tứ giác AEHF là hình j? Từ đó cm: tam giác AEH đồng dạng tam giác CFH
b) Cm: tám giác AEF đồng dạng tam giác ACB
c) Cho AH=6cm, BC=12,5cm. Tính diện tích tam giác AEF
d) Vẽ I đối xứng H qua AB. Từ B kẻ đường thẳng vuông góc BC cắt AI tại K. Cm: KC,AH,FE đồng qui
cho tam giác ABC vuông tại A (AB<AC),đường ca AH(H thuộc BC).
1 CM: tam giác HBA đồng dạng tam giác ABC và BA^2=BH.BC.
2.kẻ phân giác Be cuat góc ABC(E thuộc AC ) , BE cắt AH tại I .CM tam giác HBI đồng dạng tam giác ABE.
3. CM AI=AE
1: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
=>ΔHBA đồng dạng với ΔABC
=>BH/BA=BA/BC
=>BA^2=BH*BC
2: Xét ΔBAE vuông tại A và ΔBHI vuông tại H có
góc ABE=góc HBI
=>ΔBAE đồng dạng với ΔBHI
3: góc AEI=góc BEA=góc BIH
góc BIH=góc AIE
=>góc AEI=góc AIE
=>AE=AI
Cho tam giác ABC vuông tại A có AB = 3 cm AC = 4 cm , đường cao AH a, CM : tam giác ABC đồng dạng tam giác HBA từ đó suy ra ab² = BC . BH b , tính BC và BH c, Kẻ HE vuông góc AB , HF vuông góc AC Chứng minh AH . BH = BE.AC và tính độ dài BE
a: Xet ΔABC vuông tại A và ΔHBA vuông tại H co
góc B chung
=>ΔABC đồng dạng với ΔHBA
=>BA/BH=BC/BA
=>BA^2=BH*BC
b: \(BC=\sqrt{3^2+4^2}=5\left(cm\right)\)
AH=3*4/5=2,4cm
Cho tam giác ABC vuông tại A, đường cao AH.
a, Cm:tam giác ABC đồng dạng tam giác HBA
b, Gọi I, K lần lượt là hình chiếu của H lên AB, AC. Cm: AI.AB=AK.AC
c, Cho BC=10cm; AH=4cm. Tính SAIK.
Cho tam giác ABC vuông tại góc A có B=2C, AB=3cm. Vẽ đường cao AH (H thuộc AB)
a)CM: tam giác HBA đồng dạng với tam giác ABC
b)Kẻ tia phân giác của góc ABC cắt AH tại D cắt AC tại E. CM:AB2=AE.AC
c)CM: tam giác BHD đồng dạng với tam giác BAE rồi suy ra tỉ số diện tích hai tam giác BHD và BAE
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc HBA chung
=>ΔHBA đồng dạng với ΔABC
b; Xét ΔABE vuông tại A và ΔACB vuông tại A có
góc ABE=góc ACB
=>ΔABE đồng dạng với ΔACB
=>AB/AC=AE/AB
=>AB^2=AE*AC
c: Xét ΔBHD vuông tại H và ΔBAE vuông tại A có
góc HBD=góc ABE
=>ΔBHD đồng dạng với ΔBAE
Cho tam giác ABC vuông tại A vẽ đường cao AH, AB=6 cm, AC=8 cm
a C/m tam giác HBA đồng dạng với tam giác ABC
b Tính BC, AH, BH
c Chứng minh AH.AH=HB.HC
d Gọi I và K lần lượt là hình chiếu của H lên cạnh AB, AC
Chứng minh AI.AB=AK.AC
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
=>ΔHBA đồng dạng với ΔABC
b: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)
AH=6*8/10=4,8cm
BH=6^2/10=3,6cm
CH=10-3,6=6,4cm
c: ΔACB vuông tại A
mà AH là đường cao
nên AH^2=HB*HC
d: ΔAHB vuông tại H có HI vuông góc AB
nên AI*AB=AH^2
ΔAHC vuông tại H có HK là đường cao
nên AK*AC=AH^2=AI*AB