Cho hình 11. Chứng minh rằng AB vuông góc với CD
Cho hình bên. Chứng minh rằng AB vuông góc với CD.
Vì AC = AD (gt) nên A thuộc đường trung trực của CD.
Vì BC = BD (gt) nên B thuộc đường trung trực của CD.
Vì A ≠ B nên AB là đường trung trực của CD.
Vậy AB ⊥ CD.
Cho hình thang ABCD (AB//CD), góc D = 90 độ, góc C bằng 30 độ
a) Chứng minh rằng diện tích hình thanh ABCD = 1/4*BC*(AB+CD)
b) Gọi M là giao điểm của BC và AD. Kẻ DK vuông góc với CM (K thuộc CM), KL vuông góc với DM (L thuộc DM). Chứng minh rằng 4*DL*DM=CD2
c) Biết BC = 8cm, diện tích hình thang ABCD = 48 cm2. Tính DM, MC (không làm tròn kết quả)
Mng giúp mik với, mai mik ktra rồi
Cho hình bình hành ABCD. Kẻ AM vuông góc với BC, AN vuông góc với CD.
a, Chứng minh rằng AM : AN = AB : BC.
b, Gọi I, J lần lượt là trung điểm của AB, AD. Chứng minh rằng diện tích hình ABCD = 2 lần diện tích hình AICJ.
Bài 1. Cho hình thang ABCD cân (AB // CD, AB < CD), kẻ AE vuông góc CD tại E, BF vuông góc CD tại F. Chứng minh rằng: a) DE = CF, DF = CE b) Chứng minh tứ giác ABFE là hình chữ nhật, từ đó suy ra AF = BE.
a: Xét ΔAED vuông tại E và ΔBFC vuông tại F có
AD=BC
\(\widehat{D}=\widehat{C}\)
Do đó: ΔAED=ΔBFC
Suy ra: DE=FC
Cho hình thang ABCD (AB//CD). Gọi E, F là trung điểm của BD và AC
a) Chứng minh rằng EF//CD.
b) Đường thẳng qua E vuông góc với AD cắt đường thẳng qua F vuông góc với BC tại G. Chứng minh rằng điểm G nằm trên đường trung trực của đoạn thẳng CD.
Gọi M là trung điểm BC => BM=CM
Xét tam giác ABC có:
BM=CM
AE=EC (giả thiết vì E la trung điểm của AC)
Nên: EM là đường trung bình trong tam giác ABC
=>EM//AB và EM=AB/2
Tương tự: Xét tam giác BCD có:
FM là đường trung bình trong tam giác BCD
=>FM//CD và FM=CD/2
Lại có:
FM//CD
mà AB//CD (theo giả thiết ABCD la hthang)
Nên: FM//AB
Mà EM//AB
Do đó, theo tiên đề Ơclit ta có: E,M,F thẳng hàng.
Vậy,EF=FM-EM=(CD-AB)/2
1. Cho hình thang ABCD có góc A = góc D = 90 độ , đáy nhỏ AB = a , cạnh bên BC = 2 a . Gọi M , N lần lượt là trung điểm AD , AB
a / Tính số đo các góc ABC , BAN
b/ Chứng minh tam giác NAD đều
c/ Tính MN theo a
2. a/ Tính các góc A , góc B của hình thang ABCD ( AB // CD ) biết góc C = 70 độ , góc D = 40 độ
b/ Cho hình thang ABCD có AB // CD và góc A = góc D . Chứng minh rằng ABCD là hình thang vuông cà AC^2 + BD^2 = AB^2 + CD^2 + 2AD^2
3. Cho tứ giác ABCD :
a/ Chứng minh rằng AB + CD < AC + BD
b/ Cho biết AB + BD < hoặc = AC + CD
Chứng minh rằng AB < AC
4. Cho hình thang ABCD có AC vuông góc BD . CHứng minh rằng :
a/ AB^2 + CD^2 = AD^2 + BC^2
b/ ( AB + CD )^2 = AC^2 + BD^2
bạn hỏi thế này thì chả ai muốn làm -_- dài quá
Bạn gửi từng câu nhò thì các bạn khác dễ làm hơn!
dài quà làm sao mà có thòi gian mà trả lời .bạn hỏi ít thoi chứ
Cho hình thang ABCD (AB // CD), có 𝟾 = 𝟾 = 90 0 và CD AB AD 2 . Kẻ BE vuông góc với CD (ECD). a) Chứng minh rằng tứ giác ABED là hình vuông. b) Gọi I là trung điểm của BE. Chứng minh tứ giác ABCE là hình bình hành, từ đó suy ra điểm A đối xứng với điểm C qua I. c) Kẻ DH vuông góc với AC (HAC), AE cắt DH tại M và AE cắt DI tại N. Chứng minh tứ giác DMBN là hình thoi.
Cho hình thang ABCD có AB // CD . Biết rằng ( AB + CD )2 = AC2 + BD2 . Chứng minh rằng BD vuông góc với AC
Lấy M là trung điểm của CD
AC2−AD2=BC2−BD2
<=> (AC−→−−AD−→−)(AC−→−+AD−→−)=(BC−→−−BD−→−)(BC−→−+BD−→−)
<=> 2.DC−→−.AM−→−=2.DC−→−.BM−→−
<=> 2.DC−→−.(AM−→−−BM−→−)=0
<=> 2.DC−→−.AB−→−=0
<=> DC vuông góc với AB
a: Xét ΔABD và ΔBAC có
BA chung
AD=BC
BD=AC
Do đó; ΔABD=ΔBAC
=>góc OAB=góc OBA
=>OA=OB
OA+OC=AC
OB+OD=BD
mà OA=OB và AC=BD
nên OC=OD
b: Xét ΔODE vuông tại D và ΔOCE vuông tại C có
OE chung
OD=OC
Do đó; ΔODE=ΔOCE
=>ED=ED
c: Xét ΔADE và ΔBCE có
AD=BC
góc ADE=góc BCE
DE=CE
Do đó: ΔADE=ΔBCE
=>EA=EB