CMR: đa thức P(x) = x^3 - x + 5 không có nghiệm
Cho đa thức P(x) =2(x-3)2 +5
CMR đa thức đã cho không có nghiệm
Ta có : (x - 3)2 \(\ge0\forall x\in R\)
Nên : 3(x - 3)2 \(\ge0\forall x\in R\)
Suy ra : A = 3(x - 3)2 + 5 \(\ge5\forall x\in R\)
Hay : A = 3(x - 3)2 + 5 \(>0\forall x\in R\)
Vậy đa thức trên vô nghiệm
Ta có :
Xét \(p\left(x\right)=0\)
\(\Rightarrow2\left(x-3\right)^2+5=0\)
\(\Rightarrow2\left(x-3\right)^2=0-5\)
\(\Rightarrow2\left(x-3\right)^2=-5\)
Mà \(2\left(x-3\right)^2\ge0\forall x\)
\(\Rightarrow2\left(x-3\right)^2\ne-5\)
\(\Rightarrow2\left(x-3\right)^2+5\ne0\)
\(\Rightarrow P\left(x\right)\)không có nghiệm
Chúc bạn học tốt !!!
Vì \(^{\left(x-3\right)^2}\)\(\ge\)0\(\forall\)x\(\in\)\(ℝ\)
\(\Rightarrow\)\(2\left(x-3\right)^2\)\(\ge\)0 \(\forall\)x \(\in\)\(ℝ\)
\(\Rightarrow\)\(2\left(x-3\right)^2+5\ge5\forall x\inℝ\)
Hay P(x)\(\ge\)5
Vậy p(x) ko có nghiệm
cmr đa thức sau không có nghiệm với mọi số thực x f(x)=x^2-x+5
Ta có : f(x) = x2 - x + 5
= x2 - \(\frac{1}{2}.2x\)+ \(\left(\frac{1}{2}\right)^2\)+ \(\frac{19}{4}\)
= \(\left(x-\frac{1}{2}\right)^2+\frac{19}{4}\)
vì \(\left(x-\frac{1}{2}\right)^2\ge0\) \(\forall\)x thuộc R
\(\Rightarrow\)\(\left(x-\frac{1}{2}\right)^2+\frac{19}{4}\)> 0 \(\forall\)x thuộc R
vậy ...
Cho đa thức: \(g\left(x\right)=x^2-x-x+3\)
CMR đa thức đã cho không có nghiệm
Ta có: g(x) = x2-x-x+3 = x2-x-x+1+2 = x(x-1)-(x-1)+2 = (x-1)2+2
Do (x-1)2 lớn hơn hoặc bằng 0 => g(x) lớn hơn hoặc bằng 2
Vậy g(x) vô nghiệm
Ta có : g(x) = x2 - x - x + 3 = x2 - 2x + 3 = x2 - 2x + 1 + 2 = (x - 1)2 + 2
Vì : (x - 1)2 \(\ge0\forall x\)
Nên : (x - 1)2 + 2 \(\ge2>0\forall x\in R\)
Ta có :
\(g\left(x\right)=x^2-x-x+3\)
\(\Rightarrow g\left(x\right)=x.\left(x-1\right)-x+3\)
\(\Rightarrow g\left(x\right)=x.\left(x-1\right)-x+1+2\)
\(\Rightarrow g\left(x\right)=x.\left(x-1\right)-\left(x-1\right)+2\)
\(\Rightarrow g\left(x\right)=\left(x-1\right)\left(x-1\right)+2\)
\(\Rightarrow g\left(x\right)=\left(x-1\right)^2+2\)
Do \(\left(x-1\right)^2\ge0\forall x\Rightarrow\left(x-1\right)^2+2\ne0\)
\(\Rightarrow g\left(x\right)\)vô nghiệm
Chúc bạn học tốt !!!
Cho P(x) là 1 đa thức có hệ số nguyên thỏa mãn: P(2).P(3).P(4)=154. CMR: đa thức P(x) không có nghiệm nguyên
- Gỉa sử a là nghiệm nguyên của P(X) .
- Khi đó P(x) có dạng : \(P_{\left(x\right)}=\left(x-a\right)g\left(x\right)\)
- Theo bài ra ta có : \(P\left(x\right)=\left(2-a\right)\left(3-a\right)\left(4-a\right)g\left(2\right)g\left(3\right)g\left(4\right)=154\)
Thấy : \(\left(2-a\right)\left(3-a\right)\left(4-a\right)⋮3\forall a\in Z\)
Mà \(154⋮̸3\)
Vậy đa thức P(x) không có nghiệm nguyên .
cho đa thức : h(x) = x^4 + 1/2x^2 + 2012 . chứng tỏ h(x) vô nghiệm
CTR đa thứa : 3x^2010 + x^1002+ 1 vô nghiệm
CTR đa Thức : M(x)= x^2 + 2x + 2 vô nghiệm
CTR đa thức : M(x) = x^2 + 2x + 1 chỉ có 1 nghiệm duy nhất tìm nghiệm duy nhất đó
CMR đa thức M(x) = x^2 - x + 5 không có nghiệm nguyên
CMR: đa thức P8(x) = -x8+ x5- x2+x-1 Không có nghiệm
a> CMR : Đa thức x * f(x+1) = (x + 2) * f(x) có ít nhất 2 nghiệm
b> CMR : Đa thức (x^2 - 4) * f(x) = (x - 1) * f(x+1) có ít nhất 3 nghiệm
c> Cho đa thức f(x) thỏa mãn f(x+2)=(x^2 - 9) * f(x) với mọi x. CMR : Đa thức x * f(x) = 0 có ít nhất 3 nghiệm
a> CMR : Đa thức x * f(x+1) = (x + 2) * f(x) có ít nhất 2 nghiệm
b> CMR : Đa thức (x^2 - 4) * f(x) = (x - 1) * f(x+1) có ít nhất 3 nghiệm
c> Cho đa thức f(x) thỏa mãn f(x+2)=(x^2 - 9) * f(x) với mọi x. CMR : Đa thức x * f(x) = 0 có ít nhất 3 nghiệm
a> CMR : Đa thức x * f(x+1) = (x + 2) * f(x) có ít nhất 2 nghiệm
b> CMR : Đa thức (x^2 - 4) * f(x) = (x - 1) * f(x+1) có ít nhất 3 nghiệm
c> Cho đa thức f(x) thỏa mãn f(x+2)=(x^2 - 9) * f(x) với mọi x. CMR : Đa thức x * f(x) = 0 có ít nhất 3 nghiệm
a)x.f(x + 1) - ( x + 2). f( x) = 0 (1)
*Với x=0 thì (1) 0.f(1) – 2.f(0) =0 f(0)=0. Vậy f(x) có một nghiệm là 0.
*Với x=-2 thì (1) -2.f(-1) – 0.f(0) =0 f(-1)=0. Vậy f(x) có một nghiệm là -1.
KL: Vậy f(x) có ít nhất hai nghiệm là 0 và -1(ĐPCM).
Cách khác:
a)Ta có nghiệm của đa thức là giá trị của biến làm đa thức có giá trị bằng 0.
Nếu f(a) = 0 => a là nghiệm của f(x).
Do: x.f(x + 1) = (x + 2).f(x) (1) đúng với mọi x.
+ Thay x = 0 vào (1) ta được
0.f(0 + 1) = (0 + 2).f(0)
=> 0 = 2.f(0)
=> f(0) = 0
Do f(0) = 0 => x = 0 là 1 nghiệm của đa thức trên. (2)
+ Thay x = -2 vào (1) ta được:
(-2).f(-2 + 1) = (-2 + 2).f(-2)
=> (-2).f(-1) = 0.f(-2)
=> (-2).f(-1) = 0
=> f(-1) = 0
=> x = -1 là 1 nghiệm của đa thức trên (3)
Từ (2) và (3) => đa thức đã cho có ít nhất 2 nghiệm là x = 0 và x = -2
từ pt x.f(x+1) = f( x+ 2) .f(x)
xét x= 0
pt có dạng 0= f(2).f(0)
vậy hoặc f(2) = 0 hoặc f(0) = 0
hay hoặc x= 2 hoặc x= 0 là nghiệm của pt f(x) = 0
KL pt f(x) = 0 có ít nhất 2 nghiệm
a> CMR : Đa thức x * f(x+1) = (x + 2) * f(x) có ít nhất 2 nghiệm
b> CMR : Đa thức (x^2 - 4) * f(x) = (x - 1) * f(x+1) có ít nhất 3 nghiệm
c> Cho đa thức f(x) thỏa mãn f(x+2)=(x^2 - 9) * f(x) với mọi x. CMR : Đa thức x * f(x) = 0 có ít nhất 3 nghiệm
Ai làm được mình like 5 cái cho
b) Thay x = 0
\(0.f\left(1\right)=2f\left(0\right)\Rightarrow f\left(0\right)=0\)
Thay x = -2\(-2f\left(-1\right)=0.f\left(-2\right)\Rightarrow f\left(-1\right)=0\)
Vậy phương trình trên có ít nhất 2 nghiệm