Cho a,b,c > 0 và a.b.c = 1.Tìm giá trị nhỏ nhất của biểu thức sau:
P = (a + 1)(b + 1)(c + 1)
Cho a,b,c > 0 và a.b.c = 1.Tìm giá trị nhỏ nhất của biểu thức sau:
P = (a + 1)(b + 1)(c + 1)
Giải:
Áp dụng BĐT Cô-si ta có:
\(a+1\ge2\sqrt{a.1}=2\sqrt{a}\)
\(b+1\ge2\sqrt{b.1}=2\sqrt{b}\)
\(c+1\ge2\sqrt{c.1}=2\sqrt{c}\)
Nhân vế theo vế ta được:
\(\left(a+1\right)\left(b+1\right)\left(c+1\right)\ge2\sqrt{a}.2\sqrt{b}.2\sqrt{c}\)
\(\Rightarrow\left(a+1\right)\left(b+1\right)\left(c+1\right)\ge\left(2.2.2\right)\left(\sqrt{a}.\sqrt{b}.\sqrt{c}\right)\)
\(\Rightarrow\left(a+1\right)\left(b+1\right)\left(c+1\right)\ge8.\sqrt{abc}=8.\sqrt{1}=8\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c=1\)
Vậy \(P_{min}=8\) tại \(\Leftrightarrow a=b=c=1\)
Cho a, b, c > 0 và a.b.c = 1. Tìm giá trị nhỏ nhất của biểu thức sau: P = (a + 1)(b + 1)(c + 1)
Cho a, b, c > 0 và a.b.c = 1.
Tìm giá trị nhỏ nhất của biểu thức sau: P = (a + 1)(b + 1)(c + 1)
p=(a+1)(b+1)(c+1)
Vì a,b,c>0 áp dụng BĐT cosi ta có:
a+1\(\ge\)2\(\sqrt{a.1}\)=2\(\sqrt{a}\)(1)
b+1\(\ge\)2\(\sqrt{b.1}\)=2\(\sqrt{b}\)(2)
c+1\(\ge\)2\(\sqrt{c.1}\)=2\(\sqrt{c}\)(3)
Nhân vế với vế của(1);(2) và (3) ta có:
P=(a+1)(b+1)(c+1) \(\ge\)2.\(\sqrt{a}\).2.\(\sqrt{b}\).2.\(\sqrt{c}\)
P=(a+1)(b+1)(c+1)\(\ge\)8.\(\sqrt{abc}\)=8
Vậy P đạt giá trị nhỏ nhất là 8 dấu = xảy ra khi a=b=c=1
cho a,b,c>0 và a.b.c =1.Tìm giá trị nhỏ nhất của biểu thức :
P=(a+1).(b+1).(c+1)
ta có: \(a+1>=2\sqrt{a};b+1>=2\sqrt{b};c+1>=2\sqrt{c}\)
=> \(\left(a+1\right)\left(b+1\right)\left(c+1\right)>=8\sqrt{abc}=8\)
Vậy min P=8.Dấu = khi a=b=c=1.
Áp dụng BĐT Cô-si, ta lần lượt có:
\(a+1\ge\sqrt{a};b+1\ge\sqrt{b};c+1\ge\sqrt{c}\)
Vậy \(P=\left(a+1\right)\left(b+1\right)\left(c+1\right)\ge2\sqrt{a}\times2\sqrt{b}\times2\sqrt{c}=8\sqrt{a\times b\times c}=8\)
Dấu bằng xảy ra khi a=b=c=1
Cho a,b,c > 0 và a.b.c = 1. Tìm giá trị nhỏ nhất của biểu thức sau :
P = ( a + 1)( b+1 )( c + 1 ).
Mình đang cần gấp mong mọi người giải giúp mình nhé.
vì a;b;c >0\(\Rightarrow P=\left(a+1\right)\left(b+1\right)\left(c+1\right)>=2\sqrt{a}2\sqrt{b}2\sqrt{c}=8\cdot\sqrt{abc}=8\cdot1=8\)(bđt cosi)
dấu = xảy ra khi \(a=b=c=1\)
vậy min của P là 8 khi a=b=c=1
Bạn có thể tham khảo tại:
https://olm.vn/hoi-dap/question/922685.html
Chúc bạn học giỏi
bạn ơi sai rồi vì bất đẳng thuc co si phai la
a+b>=2\(\sqrt{ab}\)
hay \(\frac{a+b}{2}\)>=\(\sqrt{ab}\)
1. Cho a + b = 1. Tìm giá trị nhỏ nhất của biểu thức : M = a3 + b3.
2. Cho a3 + b3 = 2. Tìm giá trị lớn nhất của biểu thức : N = a + b.
3. Cho a, b, c là các số dương. Chứng minh: a3 + b3 + abc ≥ ab(a + b + c)
4. Tìm liên hệ giữa các số a và b biết rằng: a b a b
5. a) Chứng minh bất đẳng thức (a + 1)2 ≥ 4a
b) Cho a, b, c > 0 và abc = 1. Chứng minh: (a + 1)(b + 1)(c + 1) ≥ 8
6. Chứng minh các bất đẳng thức:
a) (a + b)2 ≤ 2(a2 + b2) b) (a + b + c)2 ≤ 3(a2 + b2 + c2)
7. Tìm các giá trị của x sao cho:
a) | 2x – 3 | = | 1 – x | b) x2 – 4x ≤ 5 c) 2x(2x – 1) ≤ 2x – 1.
8. Tìm các số a, b, c, d biết rằng : a2 + b2 + c2 + d2 = a(b + c + d)
9. Cho biểu thức M = a2 + ab + b2 – 3a – 3b + 2001. Với giá trị nào của avà b thì M đạt giá trị nhỏ nhất ? Tìm giá trị nhỏ nhất đó.
10. Cho biểu thức P = x2 + xy + y2 – 3(x + y) + 3. CMR giá trị nhỏ nhất của P bằng 0.
11. Chứng minh rằng không có giá trị nào của x, y, z thỏa mãn đẳng thức sau :
x2 + 4y2 + z2 – 2a + 8y – 6z + 15 = 0
bài 5 nhé:
a) (a+1)2>=4a
<=>a2+2a+1>=4a
<=>a2-2a+1.>=0
<=>(a-1)2>=0 (luôn đúng)
vậy......
b) áp dụng bất dẳng thức cô si cho 2 số dương 1 và a ta có:
a+1>=\(2\sqrt{a}\)
tương tự ta có:
b+1>=\(2\sqrt{b}\)
c+1>=\(2\sqrt{c}\)
nhân vế với vế ta có:
(a+1)(b+1)(c+1)>=\(2\sqrt{a}.2\sqrt{b}.2\sqrt{c}\)
<=>(a+1)(b+1)(c+1)>=\(8\sqrt{abc}\)
<=>(a+)(b+1)(c+1)>=8 (vì abc=1)
vậy....
bạn nên viết ra từng câu
Chứ để như thế này khó nhìn lắm
bạn hỏi từ từ thôi
cho a,b,c>0 và a+b+c . tìm giá trị nhỏ nhất của biểu thức sau: 2(a+b+c) + (\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\))
Cho a,b,c>=0; (a+b+c)=3. tìm giá trị nhỏ nhất của biểu thức B=1/(1+a)+1/(1+b)+1/(1+c)
Áp dụng bđt \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\forall x;y;z\ge0\) ta được :
\(B=\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}\ge\frac{9}{3+\left(a+b+c\right)}=\frac{9}{3+3}=\frac{9}{6}=\frac{3}{2}\)
Dấu "=" xảy ra <=> \(a=b=c=1\)
Vậy GTNN của B là \(\frac{3}{2}\) tại \(a=b=c=1\)
Cho a,b,c>=0; (a+b+c)<=3. tìm giá trị nhỏ nhất của biểu thức B=1/(1+a)+1/(1+b)+1/(1+c)
dùng bđt 1/x+1/y+1/z >/ 9/(x+y+z) với x,y,z>0