số các cặp số nguyên x,y thỏa mãn x + y +xy = 3 là
số các cặp số nguyên (x;y) thỏa mãn x+y+xy=3 là ?
Số các cặp số nguyên (x;y) thỏa mãn x+y+xy=3 là
x+y+xy=3
=>(x+xy)+y=3
=>x(y+1)+(y+1)=3+1=4
=>(x+1)(y+1)=4
lập bảng,ta tìm đc 6 cặp (x;y) thỏa mãn đề bài
tick nhé
Số các cặp số nguyên (x;y) thỏa mãn x+y+xy=3 là............
Bài 1: Có tất cả_____cặp số nguyên (x;y) thỏa mãn 2/x/ + 3/y/ = 13.
Bài 2: Số các cặp số nguyên (x;y) thỏa mãn xy + 3x = 7y + 22 là...?
mk cần gấp ạ!
1.
\(2\left|x\right|+3\left|y\right|=13\Rightarrow\left|x\right|=\dfrac{13-3\left|y\right|}{2}\)
\(\Rightarrow\left\{{}\begin{matrix}\left|y\right|\le\dfrac{13}{3}\\\left|y\right|\text{ là số lẻ}\end{matrix}\right.\) \(\Rightarrow\left|y\right|=\left\{1;3\right\}\)
- Với \(\left|y\right|=1\Rightarrow\left|x\right|=5\Rightarrow\) có 4 cặp
- Với \(\left|y\right|=3\Rightarrow\left|x\right|=2\) có 4 cặp
Tổng cộng có 8 cặp số nguyên thỏa mãn
2.
\(x\left(y+3\right)=7y+21+1\)
\(\Leftrightarrow x\left(y+3\right)-7\left(y+3\right)=1\)
\(\Leftrightarrow\left(x-7\right)\left(y+3\right)=1\)
\(\Rightarrow\left(x;y\right)=\left(6;-4\right);\left(8;-2\right)\) có 2 cặp
Số các cặp số nguyên (x,y) thỏa mãn x+y+xy=3
Ta có:
x+y+xy=3
<=> (x+xy) + (y+1) = 4
<=> x(y+1) + (y+1) = 4
<=> (x+1)(y+1) = 4
Vì x,y nguyên nên (x+1) và (y+1) nguyên
Lại có 4=(-1).(-4)=(-2).(-2)=1.4=2.2
Khi đó ta có:
{x+1= -1 <=> {x= -2
{y+1= -4........{y= -5
hoặc
{x+1= -4 <=> {x= -5
{y+1= -1........{y= -2
hoặc
{x+1= -2 <=> {x= -3
{y+1= -2........{y= -3
hoặc
{x+1= 4 <=> {x= 3
{y+1= 1........{y= 0
hoặc
{x+1= 1 <=> {x= 0
{y+1= 4........{y= 3
hoặc
{x+1= 2 <=> {x= 1
{y+1= 2........{y= 1
Vậy (x;y) bằng (-2;-5) ; (-5;-2) ; (-3;-3) ; (3;0) ; (0;3) ; (1;1)
****
Số các cặp số nguyên (x;y) thỏa mãn: x+y+xy=3
số các cặp số nguyên x, y thỏa mãn x + y + xy = 3
Ta có:
x+y+xy=3
(x+xy)+y=3
x(1+y)+(1+y)=4
(x+1)(1+y)=4
Suy ra: x+1 và y+1 thuộc ước của 4.
Ta có bảng:<xét trường hợp>
bấm đúng nha
Tìm các cặp số nguyên {x;y} thỏa mãn: x+y+xy=3
1) x + y + xy = 3
<=> x + y + xy + 1 = 4
<=> x(y + 1) + (y + 1) = 4
<=> (x + 1)(y + 1) = 4
Vì x,y nguyên nên ta xét các hệ phương trình :
* x + 1 = 4 và y + 1 = 1 <=> (x ; y) = (3 ; 0)
* x + 1 = -4 và y + 1 = -1 <=> (x ; y) = (-5 ; -2)
* x + 1 = 1 và y + 1 = 4 <=> (x ; y) = (0 ; 3)
* x + 1 = -1 và y + 1 = -4 <=> (x ; y) = (-2 ; -5)
* x + 1 = 2 và y + 1 = 2 <=> (x ; y) = (1 ; 1)
* x + 1 = -2 và y + 1 = -2 <=> (x ; y) = (-3 ; -3)
Vậy phương trình có 6 nghiệm nguyên là (3 ; 0) ; (0 ; 3) ; (-2 ; -5); (-5 ; -2) ; (1;1) và (-3 ; -3)
x+y+xy=3
<=> (x+xy) + (y+1) = 4
<=> x(y+1) + (y+1) = 4
<=> (x+1)(y+1) = 4
Vì x,y nguyên nên (x+1) và (y+1) nguyên
Lại có 4=(-1).(-4)=(-2).(-2)=1.4=2.2
Khi đó ta có:
{x+1= -1 <=> {x= -2
{y+1= -4........{y= -5
hoặc
{x+1= -4 <=> {x= -5
{y+1= -1........{y= -2
hoặc
{x+1= -2 <=> {x= -3
{y+1= -2........{y= -3
hoặc
{x+1= 4 <=> {x= 3
{y+1= 1........{y= 0
hoặc
{x+1= 1 <=> {x= 0
{y+1= 4........{y= 3
hoặc
{x+1= 2 <=> {x= 1
{y+1= 2........{y= 1
Vậy (x;y) bằng (-2;-5) ; (-5;-2) ; (-3;-3) ; (3;0) ; (0;3) ; (1;1)
Tìm số các cặp số nguyên (x,y) thỏa mãn x+y+xy=3
x + y + xy = 3
=> x(y + 1) + y + 1 = 4
=> (x + 1)(y + 1) = 4
(x+1) và (y+1) thuộc Ư(4)
x+1 | x | y+1 | y |
1 | 0 | 4 | 3 |
-1 | -2 | -4 | -5 |
2 | 1 | 2 | 1 |
-2 | -3 | -2 | -3 |
4 | 3 | 1 | 0 |
-4 | -5 | -1 | -2 |
Các cặp số (x, y) thỏa mãn là: (0, 3); (-2, -5); (1, 1); (-3, -3); (3, 0); (-5, -2)
KL: Có 6 cặp (x, y) thỏa mãn đề bài
x+y+xy=3
<=> (x+xy) + (y+1) = 4
<=> x(y+1) + (y+1) = 4
<=> (x+1)(y+1) = 4
Vì x,y nguyên nên (x+1) và (y+1) nguyên
Lại có 4=(-1).(-4)=(-2).(-2)=1.4=2.2
Khi đó ta có:
{x+1= -1 <=> {x= -2
{y+1= -4........{y= -5
hoặc
{x+1= -4 <=> {x= -5
{y+1= -1........{y= -2
hoặc
{x+1= -2 <=> {x= -3
{y+1= -2........{y= -3
hoặc
{x+1= 4 <=> {x= 3
{y+1= 1........{y= 0
hoặc
{x+1= 1 <=> {x= 0
{y+1= 4........{y= 3
hoặc
{x+1= 2 <=> {x= 1
{y+1= 2........{y= 1
Vậy (x;y) bằng (-2;-5) ; (-5;-2) ; (-3;-3) ; (3;0) ; (0;3) ; (1;1)