Tính A = \(2000.\left(2001^9+2001^8+2001^7+....+2001\right)+1\)
Giúp mk nha
1)Tính
a) A=\(\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)\left(\frac{1}{4^2}-1\right)....\left(\frac{1}{98^2}-1\right)\left(\frac{1}{99^2}-1\right)\)
b) B= 2000( 20019 + 20018 +... + 20012 + 2001)1 +2
a)Ta có:
\(A=\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)\left(\frac{1}{4^2}-1\right)....\left(\frac{1}{98^2}-1\right)\left(\frac{1}{99^2}-1\right)\)
\(=\left(\frac{1}{2.2}-1\right)\left(\frac{1}{3.3}-1\right)\left(\frac{1}{4.4}-1\right)....\left(\frac{1}{98.98}-1\right)\left(\frac{1}{99.99}-1\right)\)
\(=\left(-\frac{3}{2.2}\right).\left(-\frac{8}{3.3}\right).\left(-\frac{15}{4.4}\right)...\left(-\frac{9603}{98.98}\right).\left(-\frac{9800}{99.99}\right)\)
\(=\left[\left(-1\right).\left(-1\right).\left(-1\right)...\left(-1\right)\right].\frac{3}{2.2}.\frac{8}{3.3}.\frac{15}{4.4}...\frac{9603}{98.98}.\frac{9800}{99.99}\)
|------------------------98 số -1--------------------|
\(=\left(-1\right)^{98}.\frac{1.3}{2.3}.\frac{2.4}{3.3}.\frac{3.5}{4.4}...\frac{95.97}{98.98}.\frac{98.100}{99.99}\)
\(=\frac{1.3}{2.3}.\frac{2.4}{3.3}.\frac{3.5}{4.4}...\frac{95.97}{98.98}.\frac{98.100}{99.99}\)
\(=\frac{1.3.2.4.3.5...95.97.98.100}{2.2.3.3.4.4...98.98.99.99}\)
Ta sẽ rút gọn các thừa số chung ở tử và mẫu
\(=\frac{1.100}{2.99.99}\)
\(=\frac{50}{9801}\)
Vậy \(A=\frac{50}{9801}\)
cho mik hỏi bước 3 chỗ \(\frac{3}{2.2}\)sai o duoi lai la\(\frac{3}{2.3}\)vay
\(\frac{1}{\left(x+2000\right)\left(x+2001\right)}+\frac{1}{\left(x+2001\right)\left(x+2002\right)}+...+\frac{1}{\left(x+2006\right)\left(x+2007\right)}=\frac{7}{8}\)
\(\frac{1}{x+2000}-\frac{1}{x+2007}=\frac{7}{8}\)
\(\frac{8\left(x+2007\right)}{8\left(x+2000\right)\left(x+2007\right)}-\frac{8\left(x+2000\right)}{8\left(x+2000\right)\left(x+2007\right)}=\frac{7\left(x+2000\right)\left(x+2007\right)}{8\left(x+2000\right)\left(x+2007\right)}\)
\(8x+8.2007-8x+8.2000=7\left(x^2+4007x+2000.2007\right)\)
\(8.7-7\left(x^2+4007x+2000.2007\right)=0\)
\(7\left(8-x^2-4007x-2000.2007\right)=0\)
\(8-x^2-4007x-2000.2007=0\)
\(x^2+4007x+4013992=0\)
\(\left(x^2+2008x\right)+\left(1999x+4013992\right)=0\)
\(\left(x+2008\right)\left(x+1999\right)=0\)
\(\hept{\begin{cases}x=-2008\\x=-1999\end{cases}}\)
\(\frac{1}{\left(x+2000\right)\left(x+2001\right)}+\frac{1}{\left(x+2001\right)\left(x+2002\right)}+\frac{1}{\left(x+2006\right)\left(x+2007\right)}=\frac{7}{8}\)
\(\frac{1}{x+2000}-\frac{1}{x+2001}+\frac{1}{x+2001}-\frac{1}{x+2002}+...+\frac{1}{x+2006}-\frac{1}{x+2007}=\frac{7}{8}\)
\(\frac{1}{x+2000}-\frac{1}{x+2007}=\frac{7}{8}\)
phần đầu mk thiếu điều kiện,bn tự bổ sung nha
Tính ;
a ) 1 + 2 - 3 - 4 + 5 + 6 - 7 - 8 + ..... + 1998 - 1999 - 2000 + 2001
b ) 1 - 3 + 5 - 7 + 9 - .... - 1999 + 2001
c ) 1 + 2 + 3 - 4 + 5 + 6 + 7 - 8 + ... + 1999 - 2000 + 2001
d ) B = 1 - 7 + 13 -19 + 25 - 31 + .....; biết B có 2007 số hạng .
Giúp mik nha ! mik đang cần gấp !
Bạn nào trả lời đầy đủ , rõ ràng , và nhớ phải chính xác !
Thì mik like cho nha !
a, S = 1 + 2 - 3 - 4 +5 +6 - 7 - 8 +..... +1998 -1999 -2000 +2001
=> S = (1-3)+(2-4)+(5-7)+(6-8)+...+(1997-1999)+... + 2001 ( có 1000 hiệu = -2 )
=> S = -2 x 1000 + 2001 = 1
b, S = 1 - 3 + 5 - 7 + 9 - .... - 1999 + 2001
=> S = (1-3)+(5-7)+(9-11)+....+(1997-1999) + 2001( có 500 hiệu = -2 )
=> S = -2 x 500 + 2001 = 1001
mình chỉ lmf dc 2 câu đầu thông cảm nha
Tính:
K= 2000(20019+20018+...+20012+2001)+1
\(A=2001+2001^2+...+2001^9\)
\(\Rightarrow2001A=2001^2+2001^3+...+2001^{10}\)
\(\Rightarrow2001A-A=\left(2001^2+2001^3+...+2001^{10}\right)-\left(2001+2001^2+...+2001^9\right)\)\(\Rightarrow2000A=2001^{10}-1\)
\(\Rightarrow A=\frac{2001^{10}-1}{2000}\)
\(\Rightarrow K=2000.\frac{2001^{10}-1}{2000}+1=2001^{10}-1+1=2001^{10}\)
Vậy K=200110
Thực hiên phép tính :K=2000 (20019+20018+.......+20012+2001)2+1
tính M= \(20009\left(2001^9+2001^8+...+2001^1\right)\)
Ta có:
\(M=20009.\left(2001^9+2001^8+....+2001^1\right)\)
\(2001M=20009.\left(2001^{10}+2001^9+....+2001^2\right)\)
\(\Rightarrow2001M-M=20009\left(2001^{10}+...+2001^2\right)-20009\left(2001^9+...+2001^1\right)\)
\(\Rightarrow2000M=20009\left(2001^{10}-2001^1\right)\)
\(\Rightarrow M=\dfrac{20009\left(2001^{10}-2001\right)}{2000}\)
\(\Rightarrow M=10,0045.2001\left(2001^9-1\right)\)
\(\Rightarrow M=20019,0045.\left(2001^9-1\right)\)
Chúc bạn học tốt!!!
1 / giải phương trình sau:
\(\frac{1}{\left(x+2000\right).\left(x+2001\right)}+\frac{1}{\left(x+2001\right).\left(x+2002\right)}...\frac{1}{\left(x+2006\right)\left(x+2007\right)}=\frac{7}{8}\)
\(\frac{1}{n\left(n+1\right)}=\frac{1}{n}-\frac{1}{n+1}\)
=> \(\frac{1}{x+2000}-\frac{1}{x+2001}+\frac{1}{x+2001}-\frac{1}{x+2002}+....+\frac{1}{x+2006}-\frac{1}{x+2007}=\frac{7}{8}\)
<=> \(\frac{1}{x+2000}-\frac{1}{x+2007}=\frac{7}{8}\)
<=> \(\frac{7}{\left(x+2000\right)\left(x+2007\right)}=\frac{7}{8}\Leftrightarrow\left(x+2000\right)\left(x+2007\right)=8\)
=> x = -1999 hoặc x = - 2008
So sánh hai biểu thức A và B biết rằng
A = 2000/2001 + 2001/2002
B = 2000+2001/2001+2002
Lm hộ mk nha. Ths
Ta có: 2000/2001>1/2 ; 2001/2002>1/2
=>A=1/2+1/2=1=>A>1
B=2000+2001/2001+2002=4001/4003<1
A>1;B<1
=>A>B
Vậy A>B
Ta có: 2000/2001>1/2 ; 2001/2002>1/2
=>A=1/2+1/2=1=>A>1
B=2000+2001/2001+2002=4001/4003<1
A>1;B<1
=>A>B
Vậy A>B
Ta có: 2000/2001>1/2 ; 2001/2002>1/2
=>A=1/2+1/2=1=>A>1
B=2000+2001/2001+2002=4001/4003<1
A>1;B<1
=>A>B
Vậy A>B
tínhA=2000*(2001^1999+2001^1998+2001^1997+...+2001^2+2002)+1
Giải giúp nha!!!
cảm ơn bạn nhưng bạn ghi rõ được cho mk ko bạn??