Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Nguyễn Bảo Trung
1 tháng 4 2017 lúc 19:32

a)

Ta có:

∫π20cos2xsin2xdx=12∫π20cos2x(1−cos2x)dx=12∫π20[cos2x−1+cos4x2]dx=14∫π20(2cos2x−cos4x−1)dx=14[sin2x−sin4x4−x]π20=−14.π2=−π8∫0π2cos⁡2xsin2xdx=12∫0π2cos⁡2x(1−cos⁡2x)dx=12∫0π2[cos⁡2x−1+cos⁡4x2]dx=14∫0π2(2cos⁡2x−cos⁡4x−1)dx=14[sin⁡2x−sin⁡4x4−x]0π2=−14.π2=−π8

b)

Ta có: Xét 2x – 2-x ≥ 0 ⇔ x ≥ 0.

Ta tách thành tổng của hai tích phân:

∫1−1|2x−2−x|dx=−∫0−1(2x−2−x)dx+∫10(2x−2−x)dx=−(2xln2+2−xln2)∣∣0−1+(2xln2+2−xln2)∣∣10=1ln2∫−11|2x−2−x|dx=−∫−10(2x−2−x)dx+∫01(2x−2−x)dx=−(2xln⁡2+2−xln⁡2)|−10+(2xln⁡2+2−xln⁡2)|01=1ln⁡2

c)

∫21(x+1)(x+2)(x+3)x2dx=∫21x3+6x2+11x+6x2dx=∫21(x+6+11x+6x2)dx=[x22+6x+11ln|x|−6x]∣∣21=(2+12+11ln2−3)−(12+6−6)=212+11ln2∫12(x+1)(x+2)(x+3)x2dx=∫12x3+6x2+11x+6x2dx=∫12(x+6+11x+6x2)dx=[x22+6x+11ln⁡|x|−6x]|12=(2+12+11ln⁡2−3)−(12+6−6)=212+11ln⁡2

d)

∫201x2−2x−3dx=∫201(x+1)(x−3)dx=14∫20(1x−3−1x+1)dx=14[ln|x−3|−ln|x+1|]∣∣20=14[1−ln2−ln3]=14(1−ln6)∫021x2−2x−3dx=∫021(x+1)(x−3)dx=14∫02(1x−3−1x+1)dx=14[ln⁡|x−3|−ln⁡|x+1|]|02=14[1−ln⁡2−ln⁡3]=14(1−ln⁡6)

e)

∫π20(sinx+cosx)2dx=∫π20(1+sin2x)dx=[x−cos2x2]∣∣π20=π2+1∫0π2(sinx+cosx)2dx=∫0π2(1+sin⁡2x)dx=[x−cos⁡2x2]|0π2=π2+1

g)

I=∫π0(x+sinx)2dx∫π0(x2+2xsinx+sin2x)dx=[x33]∣∣π0+2∫π0xsinxdx+12∫π0(1−cos2x)dxI=∫0π(x+sinx)2dx∫0π(x2+2xsin⁡x+sin2x)dx=[x33]|0π+2∫0πxsin⁡xdx+12∫0π(1−cos⁡2x)dx

Tính :J=∫π0xsinxdxJ=∫0πxsin⁡xdx

Đặt u = x ⇒ u’ = 1 và v’ = sinx ⇒ v = -cos x

Suy ra:

J=[−xcosx]∣∣π0+∫π0cosxdx=π+[sinx]∣∣π0=πJ=[−xcosx]|0π+∫0πcosxdx=π+[sinx]|0π=π

Do đó:

I=π33+2π+12[x−sin2x2]∣∣π30=π33+2π+π2=2π3+15π6

Sách Giáo Khoa
Xem chi tiết
Hai Binh
27 tháng 4 2017 lúc 18:06

Hỏi đáp Toán

Sách Giáo Khoa
Xem chi tiết
Đan Lâm
20 tháng 2 2021 lúc 16:53

Câu nào mình biết thì mình làm nha.

1) Đổi thành \(\dfrac{y^4}{4}+y^3-2y\) rồi thế số.KQ là \(\dfrac{-3}{4}\)

2) Biến đổi thành \(\dfrac{t^2}{2}+2\sqrt{t}+\dfrac{1}{t}\) và thế số.KQ là \(\dfrac{35}{4}\)

3) Biến đổi thành 2sinx + cos(2x)/2 và thế số.KQ là 1

 

Sách Giáo Khoa
Xem chi tiết
Akai Haruma
8 tháng 7 2017 lúc 16:48

a)

Ta có \(A=\int ^{\frac{\pi}{4}}_{0}\cos 2x\cos^2xdx=\frac{1}{4}\int ^{\frac{\pi}{4}}_{0}\cos 2x(\cos 2x+1)d(2x)\)

\(\Leftrightarrow A=\frac{1}{4}\int ^{\frac{\pi}{2}}_{0}\cos x(\cos x+1)dx=\frac{1}{4}\int ^{\frac{\pi}{2}}_{0}\cos xdx+\frac{1}{8}\int ^{\frac{\pi}{2}}_{0}(\cos 2x+1)dx\)

\(\Leftrightarrow A=\frac{1}{4}\left.\begin{matrix} \frac{\pi}{2}\\ 0\end{matrix}\right|\sin x+\frac{1}{16}\left.\begin{matrix} \frac{\pi}{2}\\ 0\end{matrix}\right|\sin 2x+\frac{1}{8}\left.\begin{matrix} \frac{\pi}{2}\\ 0\end{matrix}\right|x=\frac{1}{4}+\frac{\pi}{16}\)

b)

\(B=\int ^{1}_{\frac{1}{2}}\frac{e^x}{e^{2x}-1}dx=\frac{1}{2}\int ^{1}_{\frac{1}{2}}\left ( \frac{1}{e^x-1}-\frac{1}{e^x+1} \right )d(e^x)\)

\(\Leftrightarrow B=\frac{1}{2}\left.\begin{matrix} 1\\ \frac{1}{2}\end{matrix}\right|\left | \frac{e^x-1}{e^x+1} \right |\approx 0.317\)

Akai Haruma
8 tháng 7 2017 lúc 18:22

c)

\(C=\int ^{1}_{0}\frac{(x+2)\ln(x+1)}{(x+1)^2}d(x+1)\).

Đặt \(x+1=t\)

\(\Rightarrow C=\int ^{2}_{1}\frac{(t+1)\ln t}{t^2}dt=\int ^{2}_{1}\frac{\ln t}{t}dt+\int ^{2}_{1}\frac{\ln t}{t^2}dt\)

\(=\int ^{2}_{1}\ln td(\ln t)+\int ^{2}_{1}\frac{\ln t}{t^2}dt=\frac{\ln ^22}{2}+\int ^{2}_{1}\frac{\ln t}{t^2}dt\)

Đặt \(\left\{\begin{matrix} u=\ln t\\ dv=\frac{dt}{t^2}\end{matrix}\right.\Rightarrow \left\{\begin{matrix} du=\frac{dt}{t}\\ v=\frac{-1}{t}\end{matrix}\right.\Rightarrow \int ^{2}_{1}\frac{\ln t}{t^2}dt=\left.\begin{matrix} 2\\ 1\end{matrix}\right|-\frac{\ln t+1}{t}=\frac{1}{2}-\frac{\ln 2 }{2}\)

\(\Rightarrow C=\frac{1}{2}-\frac{\ln 2}{2}+\frac{\ln ^22}{2}\)

Akai Haruma
8 tháng 7 2017 lúc 21:05

d)

\(D=\int ^{\frac{\pi}{4}}_{0}\frac{x\sin x+(x+1)\cos x}{x\sin x+\cos x}dx=\int ^{\frac{\pi}{4}}_{0}dx+\int ^{\frac{\pi}{4}}_{0}\frac{x\cos x}{x\sin x+\cos x}dx\)

Ta có:

\(\int ^{\frac{\pi}{4}}_{0}dx=\left.\begin{matrix} \frac{\pi}{4}\\ 0\end{matrix}\right|x=\frac{\pi}{4}\)

\(\int ^{\frac{\pi}{4}}_{0}\frac{x\cos xdx}{x\sin x+\cos x}=\int ^{\frac{\pi}{4}}_{0}\frac{d(x\sin x+\cos x)}{x\sin x+\cos x}=\left.\begin{matrix} \frac{\pi}{4}\\ 0\end{matrix}\right|\ln |x\sin x+\cos x|\)

\(=\ln|\frac{\pi\sqrt{2}}{8}+\frac{\sqrt{2}}{2}|\)

Suy ra \(D=\frac{\pi}{4}+\ln|\frac{\pi\sqrt{2}}{8}+\frac{\sqrt{2}}{2}|\)

Sách Giáo Khoa
Xem chi tiết
Ngô Bích Khuê
Xem chi tiết
Nguyễn Việt Lâm
13 tháng 6 2021 lúc 14:22

\(\int\limits^{\dfrac{\pi}{2}}_0sinxdx=cosx|^{\dfrac{\pi}{2}}_0=-1\)

minh trinh
Xem chi tiết
Nguyễn Việt Lâm
18 tháng 3 2023 lúc 10:48

\(\left\{{}\begin{matrix}u=x^2\\dv=cos2xdx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=2xdx\\v=\dfrac{1}{2}sin2x\end{matrix}\right.\)

\(\Rightarrow I=\dfrac{1}{2}x^2sin2x|^{\pi}_0-\int\limits^{\pi}_0x.sin2xdx\)

Sách Giáo Khoa
Xem chi tiết
Phan Thùy Linh
1 tháng 4 2017 lúc 23:47

Ôn tập cuối năm giải tích lớp 12

CÔNG CHÚA THẤT LẠC
9 tháng 4 2017 lúc 10:25

Giải bài 12 trang 147 sgk Giải tích 12 | Để học tốt Toán 12