Cho 2 đa thức :
f(x)+ g(x) = x^3 +6x^2 + 3x^4
f(x) - G(x) = 2x^3 -x^2 + 3x^4
Tìm f(x) và g(x)
5 Cho đa thức f(x)=x^5-4x^4-2x^2-7; g(x)=-2x^5+6x^4-2x^2+6
Tính f(x)+g(x); f(x)-g(x)
b) Cho đa thức f(x)=5x^4+7x^3-6x^2+3x-7 ; g(x)=-4x^4+2x^3-5x^2+4x+5
Tính f(x)+g(x) ; f(x)-g(x)
a)f(x)+g(x)=\(x^5-4x^4-2x^2-7-2x^5+6x^4-2x^2+6.\)
=\(-x^5+2x^4-4x^2-1\)
f(x)-g(x)=\(x^5-4x^4-2x^2-7+2x^5-6x^4+2x^2-6\)
=\(3x^5-10x^4-13\)
b)f(x)+g(x)=\(5x^4+7x^3-6x^2+3x-7-4x^4+2x^3-5x^2+4x+5\)
=\(x^4+9x^3-11x^2+7x-2\)
f(x)-g(x)=\(5x^4+7x^3-6x^2+3x-7+4x^4-2x^3+5x^2-4x-5\)
=\(9x^4+5x^3-x^2-x-12\)
a )
\(f\left(x\right)+g\left(x\right)=x^5-4x^4-2x^2-7+-2x^5+6x^4-2x^2+6\)
\(\Rightarrow f\left(x\right)+g\left(x\right)=\left(x^5-2x^5\right)+\left(6x^4-4x^4\right)-\left(2x^2+2x^2\right)+\left(6-7\right)\)
\(\Rightarrow f\left(x\right)+g\left(x\right)=-x^5+2x^4-4x^2-1\)
\(f\left(x\right)-g\left(x\right)=x^5-4x^4-2x^2-7-\left(-2x^5+6x^4-2x^2+6\right)\)
\(\Rightarrow f\left(x\right)-g\left(x\right)=x^5-4x^4-2x^2-7+2x^5-6x^4+2x^2-6\)
\(\Rightarrow f\left(x\right)-g\left(x\right)=\left(x^5+2x^5\right)-\left(4x^4+6x^4\right)+\left(2x^2-2x^2\right)-\left(6+7\right)\)
\(\Rightarrow f\left(x\right)-g\left(x\right)=3x^5-10x^4-13\)
Bài 1:Cho đa thức P(x)=3x^4+2x^2-3x^4-2x^2+2x-5 a)Thu gọn và sắp xếp các hạng tử của P(x) theo lũy thừa giảm dần của biến b)Tính P(-1);P(3) Bài 2:Cho 2 đa thức f(x)=x^2-6x+4 và g(x)=x^2-4x-2 a)Tính f(x)+g(x) b)Tính f(x)-g(x) c)Tìm x sao cho h(x)=f(x)-g(x)=0
Bài 1:
a) Ta có: \(P\left(x\right)=3x^4+2x^2-3x^4-2x^2+2x-5\)
\(=\left(3x^4-3x^4\right)+\left(2x^2-2x^2\right)+2x-5\)
\(=2x-5\)
Bài 1:
b)
\(P\left(-1\right)=2\cdot\left(-1\right)-5=-2-5=-7\)
\(P\left(3\right)=2\cdot3-5=6-5=1\)
Bài 2:
a) Ta có: f(x)+g(x)
\(=x^2-6x+4+x^2-4x-2\)
\(=2x^2-10x+2\)
Cho 2 đa thức : f [ x ] = x^3 - 5x^2 + 3x + 2 + 3x^2 . g( x ) = -x^3 - x^2 + 6x - 2x^2 - 6x + 2 . a, Thu gọn và sắp xếp các hạng tử của đa thức f ( x ) , g ( x ) theo lũy thừa giảm dần của biến . b, tính f ( x ) + g( x ) và f ( x) - g ( x )
\(f\left(x\right)=x^3-2x^2+3x+2\)
\(g\left(x\right)=-x^3-3x^2+2\)
\(f\left(x\right)+g\left(x\right)=x^3-2x^2+3x+2+\left(-x^3\right)+3x^2+2\)
\(f\left(x\right)+g\left(x\right)=x^2+3x+4\)
\(f\left(x\right)-g\left(x\right)=x^3-2x^2+3x+2+x^3+3x^2-2\)
\(f\left(x\right)-g\left(x\right)=2x^3+x^2+3x\)
Câu 1: Cho f(x) = −2x
4 + 3x
3 − 4x
2 + x − 7 và g(x) = −x
4 + 2x
3 − 3x
2 − x
3 + 3x
4 − 17. Khi
đó M(x) = f(x) + g(x)
Câu 2: Cho đa thức f(x) = −x
4 + 2x
3 − 5x
2 + 7x − 3 và g(x) = −3x
4 + 2x
3 − 7x + 5. Biết
M(x) = f(x) − g(x). Tính M(1) =?
1)Tìm a,b để đa thức f(x) chia hết cho g(x) vưới:
a) f(x) = x^4-x^3+6x^2-x+a ; g(x)= x^2-x+5
b) f(x) = 3x^3 + 10x^2 -5x+a ; g(x) = 3x+1
c) f(x) =x^3-3x+a ; g(x) = (x-1)^2
2)Thực hiện phép chia f(x) cho g(x) để tìm thg và dư ( đặt tính cột dọc or làm hàng ngang bt )
a) f(x) = 4x^3 - 3x^2 +1 ; g(x)= x^2+2x-1
b) f(x) = 2-4x+3x^4+7x^2-5x^3; g(x)=1+x^2-x
Cho f(x) + g(x) = 6x^4 - 3x^2 - 5
f(x) - g(x) = 4x^4 - 6x^3 + 7x^2 + 8x - 9
Tìm các đa thức f(x) và g(x)
=> 2 f(x) = 6x^4 - 3x^2 - 5 + 4x^4 - 6x^3 + 7x^2 + 8x - 9
= 10x^4 - 6x^3 + 4x^2 + 8x - 14
=> 2.f ( x ) = 2 ( 5x^4 - 3x^3 + 2x^2 + 4x - 7 )
=> ( fx) = 5x^4 - 3x^3 + 2x^2 + 4x - 7
g(x) tự tìm
ta có:
f(x) + g(x) = 6x^4 - 3x^2 - 5
f(x) - g(x) = 4x^4 - 6x^3 + 7x^2 + 8x - 9
công hai vế lại với nhau ta được:
f(x)+g(x)+f(x)-g(x)=6x^4 - 3x^2 - 5 + 4x^4 - 6x^3 + 7x^2 + 8x - 9
=>2f(x)=6x4+4x4-6x3-3x2+7x2+8x-5-9
2f(x)=10x4-6x3+4x2+8x-14
2f(x)=2.(5x4-3x3+2x2+4x-7)
=>f(x)=5x4-3x3+2x2+4x-7
=>g(x)=6x^4 - 3x^2 - 5 -(5x4-3x3+2x2+4x-7)
=6x4-3x2-5-5x4+3x3-2x2-4x+7
=6x4-5x4+3x3-3x2-2x2-4x-5+7
=x4+3x3-5x2-4x+2
tìm a b để đa thức f(x) chia hết cho đa thức g(x), với
a)f(x)=x^4-9x^3+21x^2+ax+b,g(x)=x^2-x-2
b)f(x)=x^4-x^3+6x^2-x+a,g(x)=x^2-x+5
c)f(x)=3x^3+10x^2-5+a,g(x)=3x+1
d)f(x)=x^3-3x+a,g(x)=(x-1)^2
Cho đa thức: f(x)= \(10x^5-8x^4+6x^3-4x^2+2x+2\)
g(x)=\(-5x^5+4x^4-3x^3+3x^2-5x+2\)
h(x)=\(-x^5+2x^4-x^3+x-7\)
a) Tính f(x)+g(x)-h(x) và f(x)-g(x)-h(x).Tìm bậc,hệ số cao nhất và hệ số tự do của đa thức kết quả.
b)Tìm x để f(x)+2g(x)=0
Cho F(x)=3x^2-7+5x-6x^2-4x^2+8
G(x)=x^4+2x-1+2x^4+3x^3+2-x
a,Thu gọn và tìm bặc của F và G
b,Tính F+G và F -G
`@` `\text {Ans}`
`\downarrow`
`a,`
` F(x)=3x^2-7+5x-6x^2-4x^2+8`
`= (3x^2 - 6x^2 - 4x^2) + 5x + (-7 + 8)`
`= -7x^2 + 5x + 1`
Bậc của đa thức: `2`
`G(x)=x^4+2x-1+2x^4+3x^3+2-x`
`= (x^4 + 2x^4) + 3x^3 + (2x - x) + (-1+2)`
`= 3x^4 + 3x^3 + x + 1`
Bậc của đa thức: `4`
`b,`
`F(x) + G(x) = (-7x^2 + 5x + 1)+(3x^4 + 3x^3 + x + 1)`
`= -7x^2 + 5x + 1+3x^4 + 3x^3 + x + 1`
`= 3x^4 + 3x^3 - 7x^2 + (5x + x) + (1+1)`
`= 3x^4 + 3x^3 - 7x^2 + 6x + 2`
`F(x) - G(x) = (-7x^2 + 5x + 1) - (3x^4 + 3x^3 + x + 1)`
`= -7x^2 + 5x + 1 - 3x^4 - 3x^3 - x - 1`
`= -3x^4 - 3x^3 - 7x^2 + (5x - x) + (1-1)`
`= -3x^4 - 3x^3 - 7x^2 + 4x`
a/
\(F\left(x\right)=\left(3-6-4\right)x^2+5x+\left(-7+8\right)=-7x^2+5x+1\) -> Đa thức bậc 2
\(G\left(x\right)=\left(1+2\right)x^4+3x^3+\left(2-1\right)x+\left(-1+2\right)=3x^4+3x^3+x+1\) -> Đa thức bậc 4
b/
\(F\left(x\right)+G\left(x\right)=-7x^2+5x+1+3x^4+3x^3+x+1\\ =3x^4+3x^3-7x^2+6x+2\)
\(F\left(x\right)-G\left(x\right)=-7x^2+5x+1-3x^4-3x^3-x-1\\ =-3x^4-3x^3-7x^2+4x\)