Chứng tỏ đa thức :f(x)= 2x4+3x+1 không có nghiệm dương
Bài 1:Tìm nghiệm của đa thức sau:
a,C= 3x+5+(7-x)
b,D= 3(2x -8) -2(4-x)
Bài 2: Cho đa thức M(x)= 5x3 +2x4-x2 +3x2 -x3 -x4 +1 -4x3
Chứng tỏ đa thức M(x) không có nghiệm.
Bài 3: Cho đa thức f(x)= 2x4 + 3x +1
a, x=-1 có phải là nghiệm của f(x) không? Vì sao?
b, Chứng tỏ đa thức f(x) không có nghiệm dương.
CÁC BẠN GIÚP MÌNH VỚI, MÌNH ĐANG CẦN GẤP!^^
bài 1:
a) C= 0
hay 3x+5+(7-x)=0
3x+(7-x)=-5
với 3x=-5
x= -5:3= \(x = { {-5} \over 3}\)
với 7-x=-5
x= 7+5= 12
=> nghiệm của đa thức C là: x=\(x = { {-5} \over 3}\) và x= 12
mình làm một cái thui nhá, còn đa thức D cậu lm tương tự nha
EM CHỊU RỒI ANH ƠI!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Chứng tỏ đa thức :f(x)= 2x4+3x+1 không có nghiệm dương
GIÙM MÌNH VỚI, MAI MÌNH NỘP RỒI, MÌNH KÊU GỌI BẠN BÈ MÌNH TICK CHO, YÊN TÂM ĐI!!!!!!
đa thức trên không có nghiệm vì
với mọi x=a ( dương) thì 2a^4+3a+1 luôn luôn > 0
a) Tìm nghiệm của đa thức P(x) = 3x + 21
b) Chứng tỏ rằng đa thức Q(x) = 2x4 + x + 2011 không có nghiệm dương
a) Tìm nghiệm của đa thức :
\(P\left(x\right)=3x+21\)
\(3x+21=0\)
\(3x=-21\)
\(x=-7\)
Do đó ta có: \(P\left(-7\right)=0\)
Vậy x=-7 là nghiệm của đa thức P(x)=3x+21
b) \(Q\left(x\right)=2x^4+x+2019\)
Với mọi x>0 ta có:
\(Q\left(x\right)=2x^4+x+2019>2.0+0+2019=2019\) với mọi x>0
=> Đa thức trên không có nghiệm dương
Chứng tỏ rằng đa thức f(x)=3x6+2x4+x2+1 Không có nghiệm
Ta có:
3\(x^6\)\(\ge\)0 với mọi x
2\(x^4\)\(\ge\)0 với mọi x
\(x^2\)\(\ge\)0 với mọi x
=> f(x)=3\(x^6\)+2\(x^4\)+\(x^2\)+1 \(\ge\)0+0+0+1\(\ge\)1 với mọi x
Vậy f(x) không co nghiệm
cho đa thức \(f\left(x\right)=2x^n+3x+1\)
Chứng minh đa thức này không có nghiệm dương
cho đa thức f(x)=2x^6+3x^2+5x^3-2x^2+4x^4-x^3+1-4x^3-x^4
chứng tỏ đa thức trên không có nghiệm
Bài 2: Cho hai đa thức
f(x) = 3x + x3 + 2x2 + 4
g(x) = x3 + 3x + 1 – x2
a) Sắp xếp các đa thức trên theo lũy thừa giảm dần của biến.
b) Tính f(x) + g(x) và f(x) – g(x)
c) Chứng tỏ f(x) – g(x) không có nghiệm
ai giúp mk với :)) mk cảm ơn !
a: \(F\left(x\right)=x^3+2x^2+3x+4\)
\(G\left(x\right)=x^3-x^2+3x+1\)
b: \(F\left(x\right)+G\left(x\right)=2x^3+x^2+6x+5\)
\(F\left(x\right)-G\left(x\right)=3x^2+3\)
a)
F(x)=x3+2x2+3x+4F(x)=x3+2x2+3x+4
G(x)=x3−x2+3x+1
b)
F(x)+G(x)=2x3+x2+6x+5F(x)+G(x)=2x3+x2+6x+5
F(x)−G(x)=3x2+3
Chứng tỏ đa thức f(x)=x2-x+1 không có nghiệm.
Ta có:
x2-x+1=x2-\(\dfrac{1}{2}x+\dfrac{1}{2}x\)+\(\dfrac{1}{4}+\dfrac{3}{4}\)
=\(x\left(x-\dfrac{1}{2}\right)+\dfrac{1}{2}\left(x+\dfrac{1}{2}\right)+\dfrac{3}{4}\)
=\(\left(x-\dfrac{1}{2}\right)+\left(x+\dfrac{1}{2}\right)+\dfrac{3}{4}\)
=\(\dfrac{3}{4}\)
Vậy f(x)≥\(\dfrac{3}{4}\)∀ x
=>f(x) vô nghiệm
\(x^2-x+1=x^2-2.x.\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{4}+1=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
Ta có: \(\left(x+\dfrac{1}{2}\right)^2\ge0\Rightarrow\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\)
\(\Rightarrow\)Đa thức vô nghiệm
\(x^2-x+1\)
= \(x^2-0,5\cdot x-0,5\cdot x+1\)
= \(x\left(x-0,5\right)-0,5\left(x-0,5\right)+0,75\)
=\(\left(x-0,5\right)^2+0,75\)
vì (x-0,5)^2 \(\ge\) 0 với mọi x
=> \(\left(x-0,5\right)^2+0,75>0\)
=> f vô nghiệm
Cho đa thức: \(f\left(x\right)=5x^3+2x^4-x^2+3x^2-x^3-x^4+1-4x^3\). Chứng tỏ rằng đa thức trên không có nghiệm.