tìm x,y thuộc Z thỏa mãn : x2+xy-2015x-2016y-2017=0
giúp mình với!cảm ơn các bạn nhé!
Tìm tất cả các số nguyên (x;y) biết : x2 + xy - 2015x - 2016y -2017 = 0
Tìm các số nguyên x;y thỏa mãn: x^2 + xy - 2015x - 2016y - 2017 = 0
\(x^2+xy-2015x-2016y-2017=0\)
\(\Rightarrow\left(x^2+xy+x\right)-\left(2016x-2016y-2016\right)=1\)
\(\Rightarrow x.\left(x+y+1\right)-2016.\left(x+y+1\right)=1\)
\(\Rightarrow\left(x-2016\right).\left(x+y+1\right)=1\)
Xét TH1: \(x-2016=1\) và \(x+y+1=1\)
\(\Rightarrow x=......;y=.......\)
Xét TH2: \(x-2016=-1\) và \(x+y+1=-1\)
\(\Rightarrow x=......;y=.......\)
Tìm các cặp số x,y với x,y thuộc Z thỏa mãn đẳng thức:
xy+3x-2y-7=0
Giúp mik vs nha... cảm ơn nhìu nhìu nekkkk!!!^-^!!!
tìm các giá trị số nguyên thỏa mãn :
a) (x-3).(2y+1)=7
b) xy-2x+5y-12=0
giúp mình đi các bạn , giải luôn hộ mình nhé , cảm ơn các bạn nhiều
Gpt \(x^2+xy-2015x-2016y-2017=0\)
Mik đang cần gấp. Các bạn giúp mik với ạ.Cảm ơn nh!!!
Bài1: Tìm các số nguyên x,y thỏa mãn: x^4+2x^2=y^3
Bài2: Tìm các số tự nhiên x,y thỏa mãn: 2x.x^2=9y^2+6y+16
Bài3: Cho x,y,z>0 thỏa mãn x^2+y^2+z^2=3. Tìm Max P= x/(3-yz) + y/(3-xz) +z/(3-xy)
Các bạn ơi giải giúp tớ câu này được không , càng nhanh càng tốt nhé, tớ cảm ơn.
Cho x,y >0 thỏa mãn x+y=1. Tìm GTNN của A=1/(x^2+y^2) + 1/xy và B=1/(x^2+y^2) +2015/xy + 4xy
Tìm x , y nguyên biêt :
a, x2 = y2 + 2y + 12
b, x2 + xy - 2015x - 2016y - 2017 = 0
a.)x^2=y^2+2x+12
x^2=y^2+2y+1+11
x^2-(y^2+2y+1)=11
x^2-(y+1)^2=11
(x-y-1)(x+y+1)=11
suy ra x-y-1=11 và x+y+1=1 hoặc x-y-1=1 và x+y+1=11
từ đó tìm được x,y
b.)x^2+xy-2015x-2016y-2017=0
x^2+xy+x-2016x-2016y-2016-1=0
x(x+y+1)-2016(x+y+1)=1
(x+y+1)(x-2016)=1
=> x+y+1=1 và x-2016=1 hoặc x+y+1=-1 và x-2016=-1
từ đó tìm được x,y
Các bạn ơi giải giúp tớ câu này được không , càng nhanh càng tốt nhé, tớ cảm ơn.
Cho x,y >0 thỏa mãn x+y=1. Tìm GTNN của A=1/(x^2+y^2) + 1/xy và B=1/(x^2+y^2) +2015/xy + 4xy
Dự đoán dấu "=" xảy ra khi x = y. Gộp một cách hợp lí các số hạng để áp dụng bất đẳng thức.
\(A=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}\ge\frac{4}{x^2+y^2+2xy}+\frac{1}{2.\frac{\left(x+y\right)^2}{4}}=\frac{4}{\left(x+y\right)^2}+\frac{2}{\left(x+y\right)^2}=6\)
Dấu "=" xảy ra khi x = y = 1/2.
GTNN của A là 6.
\(B=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{4xy}+4xy+\frac{8057}{4xy}\)
\(\ge\frac{4}{x^2+y^2+2xy}+2\sqrt{\frac{1}{4xy}.4xy}+\frac{8057}{\left(x+y\right)^2}=\frac{4}{\left(x+y\right)^2}+2+\frac{8057}{\left(x+y\right)^2}=8063\)
Dấu "=" xảy ra khi x = y = 1/2.
Vậy GTNN của B là 8063.