Loại 1: Đặt t=u(x)
Loại 2: Đặt x=u(t)
Phương pháp đổi biến loại 1
Bài toán: Tính tích phân dạng: I=∫abf(u(x))(u(x))′dx
Phương pháp:
Đặt t=u(x)⇒dt=u′(x)dx
Đổi cận:
⇒I=∫u(a)u(b)f(t)dt
Ví dụ 1: Tính các tích phân sau:
a) I=∫01ex2+1xdx
Phân tích: Ta thấy có thể viết lại: I=∫01ex2+1xdx=∫01ex2+112.2xdx=12∫01ex2+1.2xdx
Trong đó 2x là đạo hàm của x2+1 nên ta có thể đặt t=x2+1.
Giải
Đặt t=x2+1⇒dt=2xdx
Đổi cận:
⇒I=12∫12etdt=12et∣∣∣21=12(e2−e)
b) J=∫01x3x2+1−−−−−√dx
Đặt t=x2+1−−−−−√⇒t2=x2+1⇒x2=t2−1⇒xdx=tdt
Đổi cận:
⇒J=∫01x2.x2+1−−−−−√.xdx=∫12√(t2−1).t.tdt=∫12√(t4−t2)dt
=(t55−t33)∣∣∣2–√1=22√+215
Một số bài tập áp dụng
1) J1 = ∫12xex2dx 2) J2 = ∫1e1+lnx√xdx
3) J3 = ∫01x3(x4−1)5dx 4) J4 = ∫024−x2−−−−−√.xdx
5) J5 = ∫0π/2cosx(1+sinx)4dx
Phương pháp đổi biến loại 2
Trong một số trường hợp đặt biệt, ta sẽ đổi biến bằng cách đặt x=u(t) để chuyển từ biến x về biến t. Một số trường hợp mà ta thường gặp có thể áp dụng phương pháp này:
1) Hàm số có chứa a2−x2−−−−−−√: đặt x=|a|sint với (−π2≤t≤π2) hoặc x=|a|cost với (0≤t≤π).
2) Hàm số có chứa x2−a2−−−−−−√: đặt x=|a|sint với (−π2≤t≤π2;t≠0) hoặc x=|a|cost với (0≤t≤π;t≠π2).
3) Hàm số có chứa a2+x2: đặt x=|a|tant với (−π2≤t≤π2) hoặc x=|a|cott với (0≤t≤π).
Ví dụ 3: Tình các tích phân sau:
a) I=∫024−x2−−−−−√dx
Giải
Đặt x=2sint (−π2≤t≤π2)
⇒dx=2costdt
Đổi cận:
⇒I=∫0π24−4sin2t−−−−−−−−√.2costdt=∫0π24(1−sin2t)−−−−−−−−−−√.2costdt
=∫0π24cos2t−−−−−√.2costdt=∫0π24cos2tdt=∫0π22(1+cos2t)dt
=2(t+12sin2t)∣∣∣π20=π
b) J=∫01x1+x2dx
Giải
Đặt x=tant⇒dx=1cos2tdt (−π2≤t≤π2)
Đổi cận:
⇒J=∫0π4tant1+tan2t(1+tan2t)dt=∫0π4tantdt=∫0π4sintcostdt
=−∫0π4(cost)′costdt=−ln(cost)∣∣∣π40=−ln2√2
Một số bài tập áp dụng:
1) ∫01dx1+x2 2) ∫02√2−x2−−−−−√dx 3) ∫2√2dxxx2−1√
4) ∫123√2dx1−x2√ 5) ∫13√9+3x2√dxx2