Rút gọn biểu thức sau : x^2+3xy+2y^2 / x^3+2x^2 + xy^2 + 2y^3
a) rút gọn biểu thức\(\dfrac{x^2+3xy+2y^2}{x^3+2x^2y-xy^2-2y^3}\) rồi tính giá trị của biểu thức tại x=5 và y=3
B) phân tích đa thức 2x-2y-x^2+2xy-y^2
B) Ta có: 2x-2y-x2+2xy-y2
⇔ 2(x-y)-(x2-2xy+y2)
⇔ 2(x-y)-(x-y)2
⇔ (x-y)(2-x+y)
Đúng thì tick nhé
Rút gọn biểu thức: \(\frac{x^2+3xy+2y^2}{x^3+2x^2y-xy^2-2y^3}\)
\(\frac{x^2+3xy+2y^2}{x^3+2x^2y-xy^2-2y^3}\)
\(=\frac{\left(x^2+2xy+y^2\right)+xy+y^2}{\left(x^3+x^2y+xy^2+y^3\right)+x^2y-2xy^2-3y^3}\)
\(=\frac{\left(x+y\right)^2+y\left(x+y\right)}{\left(x+y\right)^3+y.\left(x^2-2xy-2y^2\right)}\)
Rút gọn phân thức x^2+3xy+2y^2/x^3+2x^2y-xy^2-2y^3
\(\dfrac{x^2+3xy+2y^2}{x^3+2x^2y-xy^2-2y^3}\)
\(=\dfrac{\left(x+y\right)\left(x+2y\right)}{x\left(x^2-y^2\right)+2y\left(x^2-y^2\right)}\)
\(=\dfrac{x+y}{x^2-y^2}\)
\(=\dfrac{1}{x-y}\)
Rút gọn phân thức
P= x^2 +3xy +2y^2 / x^3 + 2x^2.y +xy - 2y^2
rút gọn biểu thức:(8x^3-4x^2):4x-(4x^2-5x):(2x)+(2x)^2
(3x^3-x^2y):x^2-(xy^2+x^2y):(xy)+2x(x-1)
a: Ta có: \(\left(8x^3-4x^2\right):4x-\left(4x^2-5x\right):2x+\left(2x\right)^2\)
\(=2x^2-x-2x+\dfrac{5}{2}+4x^2\)
\(=6x^2-3x+\dfrac{5}{2}\)
b: Ta có: \(\left(3x^3-x^2y\right):x^2-\left(xy^2+x^2y\right):xy+2x\left(x-1\right)\)
\(=3x-y-y-x+2x^2-2x\)
\(=2x^2-2y\)
Rút gọn các biểu thức sau:
a) A= 1/3xy + 4xy - 2xy
b) B=-xy^2 + 3/2xy^2 + 4/3xy^2
c) C= (2xy)^2 + 2/3x^2y^2 - 4/3xyx
d) D= x. (3xy^2z) + 4x^2y^2z - 8x^2y . yz
a: =xy(1/3+4-2)=7/3xy
b: =xy^2(-1+3/2+4/3)=(1/3+3/2)xy^2=11/6xy^2
c: =4x^2y^2+2/3x^2y^2-4/3x^2y=-4/3x^2y+14/3x^2y^2
d: =3x^2y^2z+4x^2y^2z-8x^2y^2z=-x^2y^2z
Rút gọn phân thức:
\(a,\dfrac{x^2-x-6}{x^2+7x+10}\)
\(b,\dfrac{x^2+3xy+2y^2}{x^3+2x^2y-xy^2-2y^3}\)
\(\frac{x^2-x-6}{x^2+7x+10}\)
\(=\frac{x^2-3x+2x-6}{x^2+5x+2x+10}=\frac{x.\left(x-3\right)+2.\left(x-3\right)}{x.\left(x+5\right)+2.\left(x+5\right)}\)
\(=\frac{\left(x+2\right).\left(x-3\right)}{\left(x+2\right).\left(x+5\right)}=\frac{x-3}{x+5}\)
Rút gọn biểu thức
a) 3x+2y+xy+6 b) 2x^2+3xy-2y^2-10x-5y+12
Mình nghĩ là phân tích đa thức
a)\(3x+2y+xy+6\)
\(=x\left(y+3\right)+2\left(y+3\right)\)
\(=\left(x+2\right)\left(y+3\right)\)
b)\(2x^2+3xy-2y^2-10x-5y+12\)
\(=2x^2+\left(3y-10\right)x-\left(2y^2+5y-12\right)\)
\(=\left[2x+\left(y-4\right)\right]\left(x+2y+3\right)\)
Rút gọn phân thức sau
B=\(\dfrac{x^3+2x^2y-xy^2-2y^3}{x^2+3xy+2y^2}\)
\(B=\dfrac{x^3+2x^2y-xy^2-2y^3}{x^2+3xy+2y^2}\)
\(B=\dfrac{x^2\left(x+2y\right)-y^2\left(x+2y\right)}{x^2+xy+2xy+2y^2}\)
\(B=\dfrac{\left(x+2y\right)\left(x^2-y^2\right)}{x\left(x+y\right)+2y\left(x+y\right)}\)
\(B=\dfrac{\left(x+2y\right)\left(x-y\right)\left(x+y\right)}{\left(x+y\right)\left(2y+x\right)}\)
\(B=x-y\)\(\left(\text{Đ}K:x+2y\ne0;x+y\ne0\right)\)
Tham khảo nhé~
\(B=\dfrac{x^3+2x^2y-xy^2-2y^3}{x^2+3xy+2y^2}\)
\(=\dfrac{x^2\left(x+2y\right)-y^2\left(x+2y\right)}{x^2+xy+2xy+2y^2}\)
\(=\dfrac{\left(x^2-y^2\right)\left(x+2y\right)}{x\left(x+y\right)+2y\left(x+y\right)}\)
\(=\dfrac{\left(x-y\right)\left(x+y\right)\left(x+2y\right)}{\left(x+2y\right)\left(x+y\right)}\)
\(=x-y\)