Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nu Mùa
Xem chi tiết
Phong
6 tháng 10 2023 lúc 18:59

Bài 1:

a) Ta có:

\(tanB=\dfrac{AC}{AB}\Rightarrow\dfrac{AC}{AB}=\dfrac{5}{2}\)

\(\Rightarrow AC=\dfrac{AB\cdot5}{2}=\dfrac{6\cdot5}{2}=15\)  

b) Áp dụng Py-ta-go ta có: 

\(BC^2=AB^2+AC^2=6^2+15^2=261\)

\(\Rightarrow BC=\sqrt{261}=3\sqrt{29}\)

Phong
6 tháng 10 2023 lúc 19:02

Bài 2: 

\(\left\{{}\begin{matrix}sinM=sin40^o\approx0,64\Rightarrow cosN\approx0,64\\cosM=cos40^o\approx0,77\Rightarrow sinN\approx0,77\\tanM=tan40^o\approx0,84\Rightarrow cotN\approx0,84\\cotM=cot40^o\approx1,19\Rightarrow tanN\approx1,19\end{matrix}\right.\)

Minh Lâm
Xem chi tiết

Câu 1:

a: ΔAHB vuông tại H

=>\(AB^2=AH^2+HB^2\)

=>\(BH^2=30^2-24^2=\left(30-24\right)\left(30+24\right)=6\cdot54=6\cdot6\cdot9=6^2\cdot3^2=18^2\)

=>BH=18(cm)

Xét ΔABC vuông tại A có AH là đường cao

nên \(BH\cdot BC=BA^2\)

=>\(18\cdot BC=30^2=900\)

=>\(BC=\frac{900}{18}=50\left(\operatorname{cm}\right)\)

b: Xét ΔHAB vuông tại H có \(\sin HAB=cosB=\frac{HB}{AB}=\frac{18}{30}=\frac35\)
\(cosHAB=\sin B=\frac{AH}{AB}=\frac{24}{30}=\frac45\)

tan HAB=cot B\(=\frac{HB}{AH}=\frac{18}{24}=\frac34\)

cot HAB=tan B\(=\frac{AH}{HB}=\frac{24}{18}=\frac43\)

Bài 2:

a: BH+HC=BC

=>BC=4+9=13(cm)

Xét ΔABC vuông tại A có AH là đường cao

nên \(BH\cdot BC=BA^2\)

=>\(BA^2=4\cdot13=52\)

=>\(BA=\sqrt{52}=2\sqrt{13}\left(\operatorname{cm}\right)\)

ΔCAB vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(AC^2=13^2-\left(2\sqrt{13}\right)^2=169-52=117\)

=>\(AC=3\sqrt{13}\left(\operatorname{cm}\right)\)

b: Xét ΔABC vuông tại A có sin C\(=\frac{AB}{BC}=\frac{2\sqrt{13}}{13}\)

nên \(\hat{C}\) ≃34 độ

ΔABC vuông tại A

=>\(\hat{B}+\hat{C}=90^0\)

=>\(\hat{B}=90^0-34^0=56^0\)

Cỏ dại
Xem chi tiết
Nguyễn Thị Thuý Hằng
Xem chi tiết
Nguyễn Đỗ Thục Quyên
Xem chi tiết
Nguyễn Việt Lâm
9 tháng 8 2021 lúc 18:47

Ta có:

\(cosB=\dfrac{AB}{BC}\Rightarrow AB=BC.cosB=10.0,8=8\left(cm\right)\)

\(AC=\sqrt{BC^2-AB^2}=6\left(cm\right)\)

b.

\(sinC=\dfrac{AB}{BC}=\dfrac{8}{10}=0,8\)

\(cosC=\dfrac{AC}{BC}=\dfrac{6}{10}=0,6\)

\(tanC=\dfrac{AB}{AC}=\dfrac{8}{6}=\dfrac{4}{3}\)

\(cotC=\dfrac{AC}{AB}=\dfrac{3}{4}\)

Xuyen Ngo
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 10 2021 lúc 23:31

a: \(\widehat{B}=60^0\)

AB=8cm

\(AC=4\sqrt{3}\left(cm\right)\)

Đỗ Việt Hùng
Xem chi tiết
Hà Dương
Xem chi tiết
Stukino Usagi
12 tháng 4 2017 lúc 21:00

k biết mới học lớp 5 thôi

Phan Bao Uyen
Xem chi tiết
Nguyễn Lê Phước Thịnh
26 tháng 7 2021 lúc 21:11

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow AC^2=3.6^2-2.1^2=8.55\)

hay \(AC=\dfrac{3\sqrt{95}}{10}\left(cm\right)\)

Xét ΔABC vuông tại B có 

\(\sin\widehat{B}=\dfrac{AC}{BC}=\dfrac{3\sqrt{95}}{10}:\dfrac{36}{10}=\dfrac{\sqrt{95}}{12}\)

\(\cos\widehat{B}=\dfrac{AB}{BC}=\dfrac{2.1}{3.6}=\dfrac{7}{12}\)

\(\tan\widehat{B}=\dfrac{AC}{AB}=\dfrac{3\sqrt{95}}{10}:\dfrac{21}{10}=\dfrac{\sqrt{95}}{7}\)

\(\cot\widehat{B}=\dfrac{AB}{AC}=\dfrac{7\sqrt{95}}{95}\)