tìm nghiệm của đa thức \(2x^3-8x^2+9x\)
Tìm nghiệm của đa thức
2x^3-8x^2+9x
\(2x^3-8x^2+9x=0\)
\(\Leftrightarrow x\left(2x^2-8x+9\right)=0\)
TH1 : x = 0
TH2 : \(2x^2-8x+9=0\)
Ta có : \(\left(-8\right)^2-4.9.2=64-72< 0\)
Nên pt vô nghiệm
Vậy nghiệm đa thức là x = 0
\(2x^3-8x^2+9x=0\)
\(< =>x\left(2x^2-8x+9\right)=0\)
\(< =>\orbr{\begin{cases}x=0\\2x^2-8x+9=0\left(1\right)\end{cases}}\)
\(\left(1\right)\)ta có : \(\Delta=\left(-8\right)^2-4.2.9=64-72=-8\)
do delta < 0 nên phương trình vô nghiệm
Vậy đa thức chỉ nhận 0 là nghiệm
Đa thức f(x) = 2x^3 - 8x^2 + 9x có nhiều nhất bao nhiêu nghiệm ? Tìm tất cả các nghiệm của đa thức f(x)
Help me !!!
\(2x^3-8x^2+9x=2x\left(x^2-4x+4,5\right)=2x\left[\left(x-2\right)^2+0,5\right]\)
\(\Rightarrow F\left(x\right)\)có nghiệm duy nhất là 0
Đa thức f(x) có 3 nghiệm
+) f(0) = 2 x 0^3 - 8 x 0^ 2 + 9 x 0
= 0 - 0 + 0
= 0
+)
Ta có no của đa thức f(x) =0
\(\Leftrightarrow2x^3-8x^2+9x=0\)
\(\Leftrightarrow2x.\left(x^2-4x+4,5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x=0\\x^2-4x+4,5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\\left(x-2\right)^2+x.5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\loai\end{cases}}}}\)
Vậy đa thức f(x) chỉ có 1 nghiệm khi và chỉ khi x= 0
Cho đa thức f(x)= 2x3-8x2+9x. Đa thức f(x) có nhiều nhất bao nhiêu nghiệm? Tìm tất cả các nghiệm của đa thức f(x)
2\(x^3\) - 8\(x^2\) + 9\(x\) = 0
\(x\)(2\(x^2\) - 8\(x\) + 9) = 0
\(\left[{}\begin{matrix}x=0\\2x^2-8x+9=0\end{matrix}\right.\)
2\(x^2\) - 8\(x\) + 9 = 0
2\(x^2\) - 4\(x\) - 4\(x\) + 8 + 1 = 0
(2\(x^2\) - 4\(x\)) - (4\(x\) - 8) + 1 = 0
2\(x\)(\(x-2\)) - 4(\(x-2\)) + 1 = 0
2(\(x-2\))(\(x\) - 2) + 1 = 0
2(\(x-2\))2 + 1 = 0 (vô lí) vì (\(x\) - 2)2 ≥ 0 \(\forall\)\(x\) ⇒ 2.(\(x-2\))2 +1 ≥ 1 > 0
Vậy 2\(x^3\) - 8\(x^2\) + 9\(x\) = 0 có nhiều nhất 1 nghiệm và đó là \(x\) = 0
Cho đa thức f(x)= 2x3-8x2+9x. Đa thức f(x) có nhiều nhất bao nhiêu nghiệm? Tìm tất cả các nghiệm của đa thức f(x)
mk bít có bn nghiệm rồi mk muốn pít cách giải để tìm ra các nghiệm
Cho đa thức f(x)= 2x3-8x2+9x. Đa thức f(x) có nhiều nhất bao nhiêu nghiệm? Tìm tất cả các nghiệm của đa thức f(x)
Đa thức F(x) có nhiều nhất 3 nghiệm
f(x) = \(x\left(2x^2-8x+9\right)=0\)
TH1: x= 0
TH2: \(2x^2-8x+9=0\)
\(\Delta=\left(-8\right)^2-4.1.9=28>0\)
Vậy PT có 2 nghiệm x1 = \(\frac{8+\sqrt{28}}{2}\) ; x2 = \(\frac{8-\sqrt{28}}{2}\)
Vậy F(x) có 3 nghiệm lần lượt là
x1 = 0 ; x2 = \(\frac{8+\sqrt{28}}{2}\) ; x3 = \(\frac{8-\sqrt{28}}{2}\)
Đa thức f(x) = 2x^3 - 8x^2 + 9x có nhiều nhất bao nhiêu nghiệm ? Tìm tất cả các nghiệm của đa thức f(x)
Giups mik vs !
Đa thức f(x) có nhiều nhất 1 nghiệm . Nghiệm của đa thức f(x) là 0 vì : 2 . 0^3 - 8. 0^2 + 9.0
= 2 . 0 - 8. 0 +0
=0
k nha
F(x)=2x^3-8x^2+9x
đa thức F(x) có nhiều nhất bao nghiệm hãy tìm tất cả các nghiệm của đa thức F(x)
cần khẩn cấp!!!!!!!!!!!!!!
cần giả ra nha
Tìm nghiệm của đa thức C(x)=(2x+3).(4/9x-2/3)
(2x+3).(4/9x-2/3)=0
2x+3=0 va 4/9x-2/3=0
2x=-3 4/9x=2/3
x=-3/2 x=3/2
Zay nghiem cua da thuc tren la -3/2 va 3/2
Trần Thị Loan ơi cho mình hỏi tại sao (x^2+2x+1) lại bằng (x+1)^2 vậy??? Mình ko hiểu!!
Tìm nghiệm của các đa thức
a) 9x2 - 1 b) 8x3 - 2x c) (2x +3 ) . (5-x ) giúp mình với ạ
a) \(9x^2-1\)
Đặt \(9x^2-1=0.\)
\(\Rightarrow9x^2=0+1\)
\(\Rightarrow9x^2=1\)
\(\Rightarrow x^2=1:9\)
\(\Rightarrow x^2=\frac{1}{9}\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{1}{3}\\x=-\frac{1}{3}\end{matrix}\right.\)
Vậy \(x=\frac{1}{3}\) và \(x=-\frac{1}{3}\) đều là nghiệm của đa thức \(9x^2-1.\)
b) \(8x^3-2x\)
Đặt \(8x^3-2x=0.\)
\(\Rightarrow2x.\left(4x^2-1\right)=0\)
\(\Rightarrow2x.\left[\left(2x\right)^2-1^2\right]=0\)
\(\Rightarrow2x.\left(2x-1\right).\left(2x+1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}2x=0\\2x-1=0\\2x+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\2x=1\\2x=-1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=\frac{1}{2}\\x=-\frac{1}{2}\end{matrix}\right.\)
Vậy \(x=0;x=\frac{1}{2}\) và \(x=-\frac{1}{2}\) đều là nghiệm của đa thức \(8x^3-2x.\)
c) \(\left(2x+3\right).\left(5-x\right)\)
Đặt \(\left(2x+3\right).\left(5-x\right)=0.\)
\(\Rightarrow\left[{}\begin{matrix}2x+3=0\\5-x=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2x=-3\\x=5\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-\frac{3}{2}\\x=5\end{matrix}\right.\)
Vậy \(x=-\frac{3}{2}\) và \(x=5\) đều là nghiệm của đa thức \(\left(2x+3\right).\left(5-x\right).\)
Chúc bạn học tốt!