\(f\left(x\right)=2x^3-8x^2+9x\)
Ta có: \(f\left(x\right)=0\)\(\Rightarrow2x^3-8x^2+9x=0\)
\(pt\Leftrightarrow x\left(2x^2-8x+9\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\2x^2-8x+9=0\end{matrix}\right.\)
Xét \(2x^2-8x+9=0\)
\(\Leftrightarrow\left(2x^2-8x+8\right)+1=0\)
\(\Leftrightarrow2\left(x^2-4x+4\right)+1=0\)
\(\Leftrightarrow2\left(x-2\right)^2+1=0\)
Dễ thấy: \(\left(x-2\right)^2\ge0\Rightarrow2\left(x-2\right)^2\ge0\)
\(\Rightarrow2\left(x-2\right)^2+1\ge1>0\) (vô nghiệm)
Vậy pt có nghiệm là \(x=0\)