Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Khang Ogu siêu cấp vip p...
Xem chi tiết
Nguyễn Hoàng Minh
5 tháng 1 2022 lúc 21:41

\(xy+2x-5y=13\\ \Rightarrow x\left(y+2\right)-5y-10=3\\ \Rightarrow x\left(y+2\right)-5\left(y+2\right)=3\\ \Rightarrow\left(x-5\right)\left(y+2\right)=3=3\cdot1=\left(-3\right)\left(-1\right)\)

\(x-5\)31-3-1
\(y+2\)13-1-3
\(x\)8624
\(y\)-11-3-5

Vậy \(\left(x;y\right)=\left(8;-1\right);\left(6;1\right);\left(2;-3\right);\left(4;-5\right)\)

Nhuyễn Dương Anh
Xem chi tiết
GIỎI TOÁN VÀ TIẾNG VIỆT...
30 tháng 12 2023 lúc 21:20

a) Ko có chuyện đóa đâu nhé bạn !!!!!! ❤❤❤

 

 

 

    

Nhuyễn Dương Anh
8 tháng 1 lúc 19:34

ồ tưởng không biết làm

Hoàng Linh Chi
Xem chi tiết
Bảo Ngọc Nguyễn
22 tháng 1 2016 lúc 23:06

(x;y)= ( 1; -2); (-2;1); (6;3); (0;0); (4;4) (3;6)

Park Bo gum
Xem chi tiết
Đào Trọng Luân
17 tháng 9 2017 lúc 7:22

x +  3y = xy + 3

=> -xy + x = -3y + 3

=> x[-y + 1] = 3[-y + 1]

=> x = 3

Vậy với mọi y và x = 3 thì ta đc pt đúng

minhduc
17 tháng 9 2017 lúc 7:31

x+3y=xy+3

=> 3y-3=xy-x

=> 3(y-1)=x(y-1)

=> 3=x

=> x=3

NX : 3+3y=3y+3

=> với x=3 thì y là các giá trị nào cũng thỏa mãn .

VD: 3+3.2=3.2+3=9 ;...

vu thi yen nhi
25 tháng 9 2017 lúc 13:25

x + 3y = xy + 3
=> -xy + x = -3y + 3
=> x[ -y + 1] = 3[- y + 1]
=> x = 3
Vậy y và x bằng 3 thì ta được phương trình đúng.

minh cuong DoAN
Xem chi tiết
Empty AA
Xem chi tiết
Part Jimin
Xem chi tiết
Nguyễn Hoàng Minh
5 tháng 1 2022 lúc 17:41

\(a,\left\{{}\begin{matrix}\left|x-3y\right|\ge0\\\left|y+4\right|\ge0\end{matrix}\right.\Rightarrow VT\ge0\)

Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x-3y=0\\y+4=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3y=-12\\y=-4\end{matrix}\right.\)

\(b,Sửa:\left|x-y-5\right|+\left(y+3\right)^2=0\\ \left\{{}\begin{matrix}\left|x-y-5\right|\ge0\\\left(y+3\right)^2\ge0\end{matrix}\right.\Rightarrow VT\ge0\)

Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x-y-5=0\\y+3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=y+5=2\\y=-3\end{matrix}\right.\)

\(c,\left\{{}\begin{matrix}\left|x+y-1\right|\ge0\\\left(y-2\right)^4\ge0\end{matrix}\right.\Rightarrow VT\ge0\)

Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x+y-1=0\\y-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1-y=-1\\y=2\end{matrix}\right.\)

\(d,\left\{{}\begin{matrix}\left|x+3y-1\right|\ge0\\3\left|y+2\right|\ge0\end{matrix}\right.\Rightarrow VT\ge0\)

Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x+3y-1=0\\y+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1-3y=7\\y=-2\end{matrix}\right.\)

\(e,Sửa:\left|2021-x\right|+\left|2y-2022\right|=0\\ \left\{{}\begin{matrix}\left|2021-x\right|\ge0\\\left|2y-2022\right|\ge0\end{matrix}\right.\Rightarrow VT\ge0\)

Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}2021-x=0\\2y-2022=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2021\\y=1011\end{matrix}\right.\)

Ice Tea
Xem chi tiết
Nguyễn Phương Linh
16 tháng 2 2021 lúc 19:05

a) Có \(\left|x-3y\right|^5\ge0\);\(\left|y+4\right|\ge0\)

\(\rightarrow\left|x-3y\right|^5+\left|y+4\right|\ge0\)

mà \(\left|x-3y\right|^5+\left|y+4\right|=0\)

\(\rightarrow\left\{{}\begin{matrix}\left|x-3y\right|^5=0\\\left|y+4\right|=0\end{matrix}\right.\)

\(\rightarrow\left\{{}\begin{matrix}x=3y\\y=-4\end{matrix}\right.\)

\(\rightarrow\left\{{}\begin{matrix}x=-12\\y=-4\end{matrix}\right.\)

 

b) Tương tự câu a, ta có:

\(\left\{{}\begin{matrix}\left|x-y-5\right|=0\\\left(y-3\right)^4=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=y+5\\y=3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=8\\y=3\end{matrix}\right.\)

 

c. Tương tự, ta có:

\(\left\{{}\begin{matrix}\left|x+3y-1\right|=0\\\left|y+2\right|=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=1-3y\\y=-2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=7\\y=-2\end{matrix}\right.\)

Nguyễn Trọng Chiến
16 tháng 2 2021 lúc 19:12

a. \(\left|x-3y\right|^5\ge0,\left|y+4\right|\ge0\Rightarrow\left|x-3y\right|^5+\left|y+4\right|\ge0\) \(\Rightarrow VT\ge VP\)

Dấu bằng xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}\left|x-3y\right|^5=0\\\left|y+4\right|=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=3y\\y=-4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-12\\y=-4\end{matrix}\right.\) Vậy...

b. \(\left|x-y-5\right|\ge0,\left(y-3\right)^4\ge0\Rightarrow\left|x-y-5\right|+\left(y-3\right)^4\ge0\) \(\Rightarrow VT\ge VP\)

Dấu bằng xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}\left|x-y-5\right|=0\\\left(y-3\right)^4=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=y+5\\y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=8\\y=3\end{matrix}\right.\) Vậy ...

c. \(\left|x+3y-1\right|\ge0,3\cdot\left|y+2\right|\ge0\Rightarrow\left|x+3y-1\right|+3\left|y+2\right|\ge0\) \(\Rightarrow VT\ge VP\) Dấu bằng xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}\left|x+3y-1\right|=0\\3\left|y+2\right|=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=1-3y\\y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1-\left(-2\right)\cdot3=7\\y=-2\end{matrix}\right.\) Vậy...

Ice Tea
16 tháng 2 2021 lúc 20:06

Chân thành cảm ơn các bạn!

minh cuong DoAN
Xem chi tiết