Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Tuấn Linh
Xem chi tiết
Nguyễn Tuấn Linh
Xem chi tiết
Nguyễn Tuấn Linh
Xem chi tiết
Nguyễn Minh Quang
8 tháng 8 2021 lúc 20:36

a. ta có :\(\frac{x}{5}=\frac{y}{4}\Rightarrow\frac{x^2}{25}=\frac{y^2}{16}=\frac{x^2-y^2}{25-16}=\frac{9}{9}=1\Rightarrow x^2=25\)

\(\orbr{\begin{cases}x=5\Rightarrow y=4\\x=-5\Rightarrow y=-4\end{cases}}\)

2.\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{x^3}{27}=\frac{y^3}{64}=\frac{z^3}{125}=\frac{x^3+y^3-z^3}{27+64-125}=\frac{26}{17}\)

Vậy \(x=3\sqrt[3]{\frac{26}{17}},y=4\sqrt[3]{\frac{26}{17}},z=5\sqrt[3]{\frac{26}{17}}\)

3.\(\frac{x}{\frac{1}{8}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{2}}=\frac{x+y-z}{\frac{1}{8}+\frac{1}{3}-\frac{1}{2}}=-\frac{9}{-\frac{1}{24}}=216\) vậy \(\hept{\begin{cases}x=\frac{216}{8}=27\\y=\frac{216}{3}=72\\z=\frac{216}{2}=108\end{cases}}\)

4.\(\frac{x}{3}=\frac{1-y}{4}=\frac{z}{2}=\frac{3x+1-y-z}{3\times3+4-2}=\frac{11}{11}=1\)

Vậy \(x=3,y=-3,z=2\)

Khách vãng lai đã xóa
Nguyễn Tuấn Linh
Xem chi tiết
Nguyễn Lê Phước Thịnh
20 tháng 8 2021 lúc 20:23

1: Ta có: \(\widehat{BAD}+\widehat{B}=90^0\)

\(\widehat{BCE}+\widehat{B}=90^0\)

Do đó: \(\widehat{BAD}=\widehat{BCE}\)

2: Ta có: \(\widehat{AHE}+\widehat{BAD}=90^0\)

\(\widehat{ABD}+\widehat{BAD}=90^0\)

Do đó: \(\widehat{AHE}=\widehat{ABD}\)

thuylinh
20 tháng 8 2021 lúc 21:04

câu 3:

Xét tam giác AEH vuông tại E: góc AHE+ góc EAH= 90 độ

                                                  60 độ +góc EAH=90 độ

                                                           góc EAH=30 độ (1)

Ta có: góc A= góc EAH+ góc HAC= 30 độ +45 độ= 75 độ 

Xét tam giác ADB vuông tại D có: góc B + góc EAH= 90 độ

                                                     góc B= 90 độ - 30 độ= 60 độ

lại có: góc BAC+  góc B + góc ACB= 180 độ (đ/ lý tổng ba góc trong 1 tam giác)

=> góc ACB= 180 độ-( 75 độ + 60 độ )= 45 độ

 

 

Nguyễn Tuấn Linh
Xem chi tiết
Nguyễn Lê Phước Thịnh
30 tháng 8 2021 lúc 14:57

4: Xét ΔAMC có 

I là trung điểm của AM

N là trung điểm của AC

Do đó: IN là đường trung bình của ΔAMC

Suy ra: IN//MC

hay IN//BC

Nguyễn Tuấn Linh
Xem chi tiết
Nguyễn Lê Phước Thịnh
31 tháng 8 2021 lúc 1:13

1: Xét ΔABC có AB=AC

nên ΔABC cân tại A

Suy ra: \(\widehat{B}=\widehat{C}\)

Ta có: ΔBAC cân tại A

mà AH là đường trung tuyến ứng với cạnh đáy BC

nên AH là đường cao ứng với cạnh BC

Nguyễn Tuấn Linh
Xem chi tiết
Rin Huỳnh
30 tháng 8 2021 lúc 9:53

1. Tam giác AOC và tam giác BOD có: AO = BO; CO = DO: góc AOC = góc BOD (đối đỉnh)

--> tam giác AOC = tam giác BOD (c.g.c)

--> góc ACO = góc ODB

Mà 2 góc này ở vị trí so le trong

--> AC // BD

Rin Huỳnh
30 tháng 8 2021 lúc 9:55

b) Tam giác ACD và tam giác BDC có: CD chung; AC = BD (do tam giác AOC = tam giác BOD); góc ACO = góc ODB (câu a)

--> tam giác ACD = tam giác BDC

Rin Huỳnh
30 tháng 8 2021 lúc 9:58

c) tam giác ACD = tam giác BDC (câu b)

--> góc DBC = góc CAD

Tam giác DAE và tam giác CBF có: góc DBC=góc CAD; AE = BF; BC = AD

--> tam giác DAE = tam giác CBF (c.g.c)

Nguyễn Tuấn Linh
Xem chi tiết
Akai Haruma
27 tháng 8 2021 lúc 9:31

Đây là bài bạn phải nộp cho thầy nên mình sẽ không làm chi tiết. Nhưng mình có thể gợi ý cho bạn như sau:

1. 

Đối với tỉ lệ thức đã cho, mỗi phân số ta nhân cả tử và mẫu với 4, 3, 2. Khi đó, ta thu được 1 tỉ lệ thức mới

Dùng tỉ lệ thức trên, áp dụng tính chất dãy tỉ số bằng nhau (cộng), ta thu được $12x=8y=6z(*)$

Tiếp tục áp dụng tính chất dãy tỉ số bằng nhau cho $(*)$ dựa theo điều kiện $x+y+z=18$ ta sẽ tính được $x,y,z$ thỏa mãn.

Akai Haruma
27 tháng 8 2021 lúc 9:34

2. 

Áp dụng tính chất dãy tỉ số bằng nhau (cộng) cho 3 phân số đầu tiên, ta sẽ tìm được tổng $x+y+z$

Khi tìm được tổng $x+y+z$, cộng vào 3 phân số đầu tiên trong bài, mỗi phân số cộng thêm 1. Khi đó, ta thu được tỉ lệ thức $\frac{m}{x}=\frac{n}{y}=\frac{p}{z}(*)$ với $m,n,p$ đã tính được dựa theo giá trị $x+y+z$. 

Áp dụng tính chất dãy tỉ số bằng nhau cho tỉ lệ thức $(*)$, kết hợp với kết quả $x+y+z$ thì bài toán đã rất quen thuộc rồi.

 

Minh Hiếu
27 tháng 8 2021 lúc 9:40

b)áp dụng tính chất dãy tỉ số = nhau ta có:

y+z+6+z+x+7+x+y-13/x+y+z

=2(x+y+z)/x+y+z=2

=>x+y+z=0,5

thay vào bài ta được:

0,5-x+6/x=0,5-y+7/y=0,5-z-13=2

6,5-x/x=7,5-y/y=-12,5-z/z=2

x,y,z tự tính

 

Nguyễn Tuấn Linh
Xem chi tiết
Đào Thị Thùy Dương
8 tháng 8 2021 lúc 21:07

\(1.\)  \(P=15\frac{1}{4}:\left(-\frac{5}{7}\right)-25\frac{1}{4}:\left(-\frac{5}{7}\right)\)

       \(=\left(15\frac{1}{4}-25\frac{1}{4}\right)\cdot\left(-\frac{7}{5}\right)\)

       \(=\left(-10\right)\cdot\left(-\frac{7}{5}\right)\)

       \(=14\)

vậy P=14

\(2.\)   \(\left(\frac{21}{10}-|x+2|\right):\left(\frac{19}{10}-\frac{7}{5}\right)+\frac{4}{5}=1\)

           \(\Rightarrow\left(\frac{21}{10}-|x+2|\right):\frac{1}{2}+\frac{4}{5}=1\)

           \(\Rightarrow\left(\frac{21}{10}-|x+2|\right)\cdot2+\frac{4}{5}=1\)

          \(\Rightarrow\left(\frac{21}{5}-|x+2|\right)+\frac{4}{5}=1\)

         \(\Rightarrow\frac{21}{5}-|x+2|=\frac{1}{5}\)

         \(\Rightarrow|x+2|=4\)

         \(\Rightarrow\orbr{\begin{cases}x+2=4\\x+2=-4\end{cases}}\)

          \(\Rightarrow\orbr{\begin{cases}x=2\\x=-6\end{cases}}\)

vậy  \(x\in\left\{2;-6\right\}\)

Khách vãng lai đã xóa
Nguyễn Minh Quang
8 tháng 8 2021 lúc 21:11

bài 1

ta có \(P=\left(15\frac{1}{4}-25\frac{1}{4}\right):\left(-\frac{5}{7}\right)=-10:\left(-\frac{5}{7}\right)=-10\times-\frac{7}{5}=14\)

2.\(\left(\frac{21}{10}-\left|x+2\right|\right):\left(\frac{19}{10}-\frac{14}{10}\right)+\frac{4}{5}=1\)

\(\Leftrightarrow\left(\frac{21}{10}-\left|x+2\right|\right):\frac{5}{10}=\frac{1}{5}\Leftrightarrow\frac{21}{10}-\left|x+2\right|=\frac{2}{5}\)

\(\Leftrightarrow\left|x+2\right|=\frac{21}{10}-\frac{2}{5}=\frac{17}{10}\Leftrightarrow\orbr{\begin{cases}x+2=\frac{17}{10}\\x+2=-\frac{17}{10}\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-\frac{3}{10}\\x=-\frac{37}{10}\end{cases}}}\)

Khách vãng lai đã xóa