Cho tam giác ABC có trung điểm của BC là M(3;20, G(\(\dfrac{2}{3}\),\(\dfrac{2}{3}\)), tâm đường tròn ngoại tiếp là I(1;2),Xác định toạ độ điểm C. Đs(1;3),(5;1)
Cho tam giác ABC có chiều cao AH = 4 cm. Trên đáy BC lấy điểm M sao cho M là trung điểm của BC. Biết BM = 3 cm. Tính diện tích tam giác ABM và tam giác ABC
Diện tích tam giác ABM là:
4.3=12(cm2)
Diện tích tam giác ABC là:
4.6=24(cm2)
Cho tam giác ABC,gọi M là trung điểm của BC,biết AM là trung điểm của BC,biết AM=1/2 BC.Chứng minh tam giác ABC là tam giác vuông (có vẽ hình)
ta có: AM = 1/2 BC => AM = BM, CM
xét tam giác ABM có : AM = BM
=> ABM cân tại M
xét tam giác ACM có : AM = CM
=> ACM cân tại M
Mà góc AMB + AMC = 180 độ ( kề bù )
=> góc B + góc BAM + góc C + góc CAM = 180 độ
Mà góc B = góc BAM
góc C = góc CAM
=> BAM + CAM = 90 độ
=> tam giác ABC cân tại A
Cho tam giác ABC có góc A= 100 độ, M là trung điểm của BC. Trên tia đối của tia MA lấy điểm N sao cho M là trung điểm của AN. chứng minh AB=NC
Cho tam giác ABC có góc A= 100 độ, M là trung điểm của BC. Trên tia đối của tia MA lấy điểm N sao cho M là trung điểm của AN
a) chứng minh AB=NC
b) Tính góc ACN
c) Trên cạnh AB lấy điểm E, trên cạnh CN lấy điểm F sao cho BE= CF. chứng minh các đoạn thẳng AN, BC, EF cùng đi qua một điểm
Cíu mị gấp !!!!!!!!!!!!!!!!!!!!!!!!!!!
a: Xét tứ giác ABNC có
M là trung điểm của AN
M là trung điểm của BC
Do đó:ABNC là hình bình hành
Suy ra: AB=NC
Cho tam giác ABC có AB=4cm , AC=6cm , BC=8cm , M là trung điểm của BC , D là trung điểm của BM . Chứng minh tam giác ABD ~ tam giác CBA
Xet ΔABD và ΔCBA có
AB/CB=BD/BA
góc B chung
=>ΔABD đồng dạng vơi ΔCBA
Bài 1 : Tứ giác ABCD có A=57o C=110o D=75o. Tính số đo góc B. Bài 2: Cho tam giác ABC có AB = 8cm, M là trung điểm của AC, N là trung điểm của BC. Tính MN
Bài 5: Cho tam giác ABC vuông tại A. M là trung điểm của BC.
a/ Biết BC = 10cm. Tính AM?
b/ Kẻ MK\(\perp\)AC(K\(\in\)AC), MEAB(E\(\in\)AB). Tứ giác AEMK là hình gì? Vì sao?
Bài 7: Cho tam giác ABC. Qua A kẻ đường thẳng song song với BC, qua C kẻ đường thẳng song song với AB, hai đường thẳng cắt nhau tại D.
a/ Chứng minh tứ giác ABCD là hình bình hành
b/ Lấy O là trung điểm của AC. Chứng minh B và D đối xứng với nhau qua O.
Bài 1:
Xét tứ giác ABCD:
\(\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360^{o}\) (Tổng các góc trong tứ giác).
Mà \(\widehat{A}= \) \(57^o;\) \(\widehat{C}=\) \(110^o;\) \(\widehat{D}=\) \(75^o\left(gt\right).\)
\(\Rightarrow\) \(\widehat{B}=\) \(118^o.\)
Bài 2:
Xét ΔABC có
M là trung điểm của AC
N ladf trung điểm của BC
Do đó: MN là đường trung bình
=>MN=AB/2=4(cm)
Bài 5:
a: AM=BC/2=5(cm)
b: Xét tứ giác AEMK có
\(\widehat{AEM}=\widehat{AKM}=\widehat{KAE}=90^0\)
Do đó: AEMK là hình chữ nhật
Cho tam giác ABC có AB AC gọi M là một điểm nằm trong tam giác sao cho MB MC, N là trung điểm của BC CMR a, AM là tia pg của BAC b, 3 điểm A,M,N thẳng hàngc,AN là đường trung trực của BC
a) Xét Δ AMC và Δ AMB có:
AC = AB (gt)
AM là cạnh chung
MC = MB (gt)
⇒Δ AMC = Δ AMB (c.c.c)
⇒∠CAM = ∠BAM (2 góc tương ứng)
⇒AM là phân giác BAC ( đpcm)
b) Xét t/g ANC và t/g ANB có:
AC = AB (gt)
AN là cạnh chung
NC = NB (gt)
⇒ Δ ANC = Δ ANB (c.c.c)
⇒ ∠CAN = ∠BAN (2 góc tương ứng)
⇒ AN là phân giác BAC
Như vậy, AM và AN đều là phân giác của BAC
Nên AM và AN trùng nhau hay A,M,N thẳng hàng (đpcm)
c)Vì Δ ANC = Δ ANB (câu b)
⇒ ∠ANC = ∠ANB (2 góc tương ứng)
Mà ∠ANC + ∠ANB = 180o ( kề bù)
Nên ∠ANC = ∠ANB = 90o
⇒AN vg BC hay MN vg BC
Mà CN = BN (gt)
Do đó, MN là đường trung trực của BC ( đpcm)
cho tam giác ABC có M là trung điểm của BC , N là trung điểm của AC . Hai đoạn AM và BN cắt nhau tại O , biết rằng BO = 2/3 BN . Tính diện tích tam giác ABC biết diện tích tam giác MON là 20 cm2
S MON=20cm2
=>S NAM=60cm2
=>S AMC=120cm2
=>S ABC=240cm2
MÌNH ĐĂNG LẠI NÈ ._.
Cho tam giác ABC có BC=2AB. Gọi M là trung điểm của BC. N là trung điểm BM. Trên tia đối của tia NA lấy điểm E sao cho AN=EN. Chứng minh:
a) Tam giác NAB bằng tam giác NEM
b) Tam giác MAB là tam giác cân
c) M là trọng tâm của tam giác AEC
d) AB > 2/3 AN
Vẽ hình, gt với kl giúp mình với ạ
CẢM ƠN NHÌU<3333333333333333
a: Xét ΔNAB và ΔNEM có
NA=NE
\(\widehat{ANB}=\widehat{ENM}\)
NB=NM
Do đó:ΔNAB=ΔNEM
b: Xét ΔMAB có BA=BM
nên ΔBAM cân tại B
c: Xét ΔAEC có
CN là đường trung tuyến
CM=2/3CN
Do đó: M là trọng tâm của ΔAEC
Bài 5: Cho tam giác ABC có BC = 2AB. Gọi M là trung điểm của BC, N là trung điểm của BM. Trên tia đối của tia NA lấy điểm E sao cho AN = EN. Chứng minh:
a) tam giác NAB = tam giác NEM
b) MAB là tam giác cân
c) M là trọng tâm của tam giác AEC
a) Xét ΔNAB và ΔNEM có
NA=NE(gt)
\(\widehat{ANB}=\widehat{ENM}\)(hai góc đối đỉnh)
NB=NM(N là trung điểm của BM)
Do đó: ΔNAB=ΔNEM(c-g-c)
b) Ta có: BC=2AB(gt)
mà BC=2BM(M là trung điểm của BC)
nên AB=BM
Xét ΔBAM có BA=BM(cmt)
nên ΔBAM cân tại B(Định nghĩa tam giác cân)
cho tam giác abc có M trung điểm của BC ,N là trung điểm của AC ,đường trung trực BC cắt dường trung trực của AC tại O,gọi H là trực tâm tam giác ABC
a cm tam giác AHB đồng dạng tam giác MNO
b gọi G là giao điểm của OH với AM cmr G là trọng tâm của tam giác ABC
a: OM//AH
ON//BH
MN//AB
=>góc BAH=góc OMN và góc ABH=góc ONM
=>ΔABH đồng dạng với ΔMNO
b: A,G,M thẳng hàng và H,G,O thẳng hàng
=>góc AGH=góc MGO
=>ΔAHG đồng dạng với ΔMOG
=>OM/AH=MG/AG
=>OM/AH=MN/AB=1/2
=>GM/GA=1/2
=>G là trọng tâm của ΔACB