cho tam giác abc vuông tại b ,bd là phân giác của b ( D thuộc AC ) biết AB =5 BC =12 tính AD ,DC
cho tam giác abc vuông tại b, phân giác ad (d thuộc bc). Qua d kẻ đường thẳng vuông góc với ac tại f.
a, tính bc biết ab=3cm,ac=5cm
b, CM:tam giác bad= tam giác fad
c, CM: ad là trung trực của bf; bd<dc
cho tam giác ABC Vuông tại A ( AB < AC)
a) Cho biết AB = 9cm , AC =12 cm . Tính BC
b) BD là Phân giác của góc B ( D thuộc AC ) . Vẽ DE vuông góc BC tại e. Chứng minh tam giác ABD = tam giác EDB
c) Chứng minh rằng DA <DC
a, Áp dụng Đ. L. Py-ta-go vào tg ABC vuông tại A, có:
BC2=AB2+AC2
=>BC2=92+122=81+144=225.
=>BC=15(cm)
b, Xét tg ABD và tg EBD, có:
góc ABD= góc DBE(tia phân giác)
BD chung.
góc A= góc E(=90o)
=>tg ABD= tg EBD(ch-gn)
Cho tam giác ABC vuông tại A có AB =21 cm ; AC =28cm . Gọi AD là phân giác của góc BAC ,AH là đường cao của tam giác ( H thuộc BC,D thuộc BC ) a,Tính BC,BD,DC? b,Tính đường cao AH? c,cmr: tam giác AHB đồng dạng tam giác CHA
a: \(BC=\sqrt{21^2+28^2}=35\left(cm\right)\)
BD là phân giác
=>BD/AB=CD/AC
=>BD/3=CD/4=35/7=5
=>DB=15cm; DC=20cm
b: AH=21*28/35=16,8cm
c: Xet ΔAHB vuông tại H và ΔCHA vuông tại H có
góc HAB=góc HCA
=>ΔAHB đồng dạng với ΔCHA
Cho tam giác abc vuông tại a ab =3 AC =4 Ah là đường cao BD là phân giác của góc B ( D THUỘC AC). Tính AD, DC
cho tam giác abc vuông tại a , ab=3, ac=4 . AH là đường cao. bd là phân giác của góc b ( d thuộc ac). tính ad, dc
Ta có: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(BC^2=3^2+4^2=25\)
=>\(BC=\sqrt{25}=5\left(cm\right)\)
Xét ΔBAC có BD là phân giác
nên \(\dfrac{AD}{AB}=\dfrac{CD}{CB}\)
=>\(\dfrac{AD}{3}=\dfrac{CD}{5}\)
mà AD+CD=AC=4
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{AD}{3}=\dfrac{CD}{5}=\dfrac{AD+CD}{3+5}=\dfrac{4}{8}=\dfrac{1}{2}\)
=>\(AD=\dfrac{3}{2}=1,5\left(cm\right);CD=\dfrac{5}{2}=2,5\left(cm\right)\)
Cho tam giác ABC vuông tại A (AB<AC),đường cao AH (H thuộc BC).
a) Chứng minh: tam giác HBA đồng dạng tam giác ABC
b) Chứng minh: AB2=BC.HB
c) gọi BD là phân giác của ABC (D thuộc BC) sao cho AD= 3cm Dc= 5 cm. TÍnh độ dài các đoạn thẳng AB, BC
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
=>ΔHBA đồng dạng với ΔABC
b: ΔHBA đồng dạng với ΔABC
=>BH/BA=BA/BC
=>BA^2=BH*BC
Cho tam giác ABC vuông tại A ( AB < AC), BD là đường phân giác của góc B (D thuộc AC). Vẽ DE vuông góc BC tại E. a) Cho biết AB = 3 cm AC = 4 cm .Tính BC b) Chứng minh BD là đường trung trực của AE c) Chứng minh rằng DA < DC d) Vẽ CF vuông góc với BD tại F. Chứng minh rằng các đường thẳng AB, DE, CF đồng quy.
a, Xét Δ ABC vuông tại A, có :
\(BC^2=AB^2+AC^2\) (định lí Py - ta - go)
=> \(BC^2=3^2+4^2\)
=> \(BC^2=25\)
=> BC = 5 (cm)
b, Xét Δ ABD và Δ EBD, có :
\(\widehat{ABD}=\widehat{EBD}\) (BD là tia phân giác \(\widehat{ABE}\))
\(\widehat{BAD}=\widehat{BED}=90^o\)
BD là cạnh chung
=> Δ ABD = Δ EBD (g.c.g)
=> AB = AE
Xét Δ ABE, có :
AB = AE (cmt)
=> Δ ABE cân tại E
Ta có :
Δ ABE cân tại E
BD là tia phân giác của \(\widehat{ABE}\))
=> BD là đường trung trực của AE
c, Ta có : Δ ABD = Δ EBD (cmt)
=> AD = ED
Trong Δ CED, cạnh huyền DC là cạnh lớn nhất
=> ED < DC
Mà AD = ED (cmt)
=> AD < DC
cho tam giác ABC vuông tại A ,ABC=60 độ;BD là Phân giác của ABC. ( D thuộc AC). Kẻ DE vuông góc BC ( E thuộc BC)
a. biết BC = 10cm AB=5 cm tính cạnh AC? b. so sánh: DE và DC
c chứng minh tg ABD = tg EBD
d chứng minh tg BDC cân
e kẻ CF vuông góc BD ( F thuộc tia BD) chứng minh BA;ED và CF đồng quy
GIÚP MIK VỚI Ạ MIK CẦN RẤT GẤP
a: \(AC=\sqrt{10^2-5^2}=5\sqrt{3}\left(cm\right)\)
b: ΔDEC vuông tại E
=>DE<DC
c: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
góc ABD=góc EBD
=>ΔBAD=ΔBED
d: Xét ΔDBC có góc DBC=góc DCB
nên ΔDBC cân tại D
e: gọi giao của CF và AB là H
Xét ΔBHC có
BF,CA là đường cao
BF cắt CA tại D
=>D là trực tâm
=>HD vuông góc BC tại E
=>H,D,E thẳng hàng
=>BA,DE,CF là trực tâm
Cho tam giác ABC vuông tại A có AB<AC,BD là tia phân giác của góc B (D thuộc AC) CMR:a)AD<DC b)Cho biết AC=3cm,góc C=30 độ Tính AB