Cho ∆ABC. Gọi M lad trung điểm của BC. Chứng minh rằng MA<(AB+AC):2
Cho tam giác ABC có AB=AC , M lad trung điểm của BC .
a) chứng minh rằng : tam giác AMB = tam giác AMC
b) trên tia đối của tia MA lấy điểm D sao cho MD=MA . Chứng minh rằng AB song song với CD
m.n giúp mình với nha . cảm ơn các bạn nhiều !!!
Chotam giác ABC. Gọi M là trung điểm của BC. Trên tia đối của MA lấy điểm D sao cho MA = MD.
a)Chứng minh rằng tgMAC=tg MDB
b)Chứng minh rằng AC = DB và AC // DB.
Cho tam giác ABC. Gọi M và N lần lượt là trung điểm của AB và Ac, Vẽ điểm D và E sao cho N là trung điểm của BD và M là trung điểm cuat CE. Chứng minh rằng:
a)tam giác AND=tam giác CNB
b)AD=BC;AD /BC
c) A lad trung điểm của ED
a) Để chứng minh tam giác AND=tam giác CNB
Ta có: Xét tam giác AND và tam giác CNB
Có: AN=CN
^AND=^BNC
Vậy hai tam giác bằng nhau.
đpcm.
b) Khi tam giác AND=tam giác CNB
=>AD=BC(hai cạnh tương ứng)
Và^D=^B ( hai góc tương ứng)
Mà hai góc vị trí so le
Nên: \(\frac{AD}{BC}\)
đpcm.
c) Xét hai tam giác EMA và CMB
CM=EM
=> ^EMA=^BMC
=>hai tam giác bằng nhau
=>EA=CB (hai cạnh tương ứng)
Mà AD=CBvà EA = CB
=> AD=EA
=> A là trung điểm ED
đpcm.
Cho tam giác ABC vuông tại A. Gọi M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MA=MD.
a) Chứng minh rằng tam giác ABM= tam giác DCM.
b) Gọi K là trung điểm của AC. Chứng minh rằng BK=DK.
c) Gọi E là giao điểm của AM và BK, F là giao điểm Của KD và BC. Chứng minh rằng tam giác KEF cân
Cho tam giác ABC có AB =AC . Gọi M là trung điểm của đoạn thẳng BC .
a) Chứng minh rằng ΔABM =ΔACM .
b) Trên tia đối của tia MA lấy điểm D sao cho MD = MA . Chứng minh rằng AB // CD .
c) Gọi I là trung điểm của đoạn thẳng BD . Trên tia đối của tia IC lấy điểm E sao cho
IE =IC . Chứng minh rằng A B E , thẳng hàng.
a: Xét ΔABM và ΔACM có
AB=AC
AM chung
BM=CM
Do đó: ΔABM=ΔACM
cho tam giác nhọn ABC (AB < AC) ; gọi M là trung điểm là trung điểm của BC. Trên tia đối của tia MA xác định điểm E sao cho ME = MA.
1. Chứng minh tam giác MAC = tam giác MEB
2. Chứng minh AC = EB
Kẽ EH vuông góc với BC, (H thuộc BC). Chứng minh rằng EH < MA.
1: Xét ΔMAC và ΔMEB có
MA=ME
\(\widehat{AMC}=\widehat{EMB}\)
MC=MB
Do đó: ΔMAC=ΔMEB
2: Ta có: ΔMAC=ΔMEB
nên AC=EB
Bìa 1:
Cho tam giác nhọn ABC(AB < AC). Gọi M là trung điểm của BC. Trên tia đối của
tia MA lấy điểm D sao cho M là trung điểm của AD.
a) Chứng minh rằng: AMBA = AMCD.
b) Kẻ AH vuông góc với BC tại H và DK vuông góc với BC tại K. Chứng minh rằng: AH= DK.
c) Tia phân giác của ABC cắt AH và AM lần lượt tại I và E. Tia phân giác của BCD cắt KD và
MD lần lượt tại J và F. Chứng minh rằng: ABIA = ACJD.
d) Chứng minh rằng: I, M, J thẳng hàng.
Cho tam giác ABC vuông tại A. Gọi M là trung điểm của BC, trên tia đối của MA lấy điểm D sao cho M là trung điểm của AD a/ Chứng minh rằng tam giác MAB = tam giác MDC và CD vuông góc AC _b/ Gọi N là trung điểm của AC, chứng minh rằng NB = ND
( Hình mình hk vẽ nha bạn, thông cảm -.- )
a,
*Xét tam giác MAB và tam giác MDC có:
+ MB = MC ( vì M là trung điểm của BC )
+ Góc BMA = góc DMC ( 2 góc đối đỉnh )
+ AM = AD ( gt )
\(\Rightarrow\)Tam giác MAB = tam giác MDC (c.g.c)
* Vì tam giác ABC vuông tại A \(\Rightarrow\)góc ABC + góc ACB = 90\(^0\)
Mà góc ABC = góc MCD ( vì tam giác MAB = tam giác MDC )
\(\Rightarrow\)Góc ACB + góc MCD = 90 \(^0\)
\(\Rightarrow\)Góc DCA = 90\(^0\)
\(\Rightarrow\)AC vuông góc CD
b, Xét tam giác BAN và tam giác DCN có
+ BA = DC ( vì tam giác MAB = tam giác MDC )
+ Góc BAC = góc DCA = 90\(^0\)
+ AN = NC ( vì N là trung điểm của AC )
\(\Rightarrow\)Tam giác BAN = tam giác DCN ( c.g.c )
\(\Rightarrow\)BN = DN ( 2 cạnh tương ứng )
k mình nhaaaaaaaaaaaaaaaaaaa
cho tam giác ABC , gọi M là trung điểm của BC. Chứng minh rằng nếu MA= 1/2 BC thì GÓC A= 90 độ
nếu MA=1/2BC
=> MA=MC=MB ( M là tđ của BC)
=> tam giác AMC và tam giác AMB cân tại M
=> góc A1=C và A2=B
tam giác ABC có góc B+C+A1+A2=180 độ
=> A2+A1+A1+A2=180 độ
=> 2A1+2A2=180 do
=> 2(A1+A2)=180 độ
=> góc BAC=90 độ
vậy nếu MA=1/2BC thì góc A=90 độ