Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Kim Tuyến
Xem chi tiết
Nguyễn Lê Phước Thịnh
8 tháng 7 2021 lúc 23:43

a) Ta có: \(C=\dfrac{x\left(1-x^2\right)^2}{1+x^2}:\left[\left(\dfrac{1-x^3}{1-x}+x\right)\left(\dfrac{1+x^3}{1+x}-x\right)\right]\)

\(=\dfrac{x\left(x^2-1\right)^2}{x^2+1}:\left[\left(\dfrac{\left(1-x\right)\left(1+x+x^2\right)}{1-x}+x\right)\left(\dfrac{\left(1+x\right)\left(1-x+x^2\right)}{\left(1+x\right)}-x\right)\right]\)

\(=\dfrac{x\left(x^2-1\right)^2}{x^2+1}:\left[\left(x^2+2x+1\right)\left(x^2-2x+1\right)\right]\)

\(=\dfrac{x\left(x-1\right)^2\cdot\left(x+1\right)^2}{\left(x^2+1\right)}\cdot\dfrac{1}{\left(x+1\right)^2\cdot\left(x-1\right)^2}\)

\(=\dfrac{x}{x^2+1}\)

b) Thay \(x=-\dfrac{3}{2}\) vào C, ta được:

\(C=\dfrac{-3}{2}:\left(\dfrac{9}{4}+1\right)=\dfrac{-3}{2}:\dfrac{13}{4}=\dfrac{-3}{2}\cdot\dfrac{4}{13}=\dfrac{-6}{13}\)

c) Ta có: \(C=\dfrac{1}{2}\)

nên \(\dfrac{x}{x^2+1}=\dfrac{1}{2}\)

\(\Leftrightarrow x^2-2x+1=0\)

\(\Leftrightarrow\left(x-1\right)^2=0\)

\(\Leftrightarrow x=1\)(Loại)

Kim Tuyến
Xem chi tiết
Kim Tuyến
Xem chi tiết
Kim Tuyến
Xem chi tiết
D-low_Beatbox
9 tháng 6 2021 lúc 20:18

a, ĐKXĐ: x≠±2

A=\(\left(\dfrac{x}{x^2-4}+\dfrac{2}{2-x}+\dfrac{1}{x+2}\right)\left(x-2+\dfrac{10-x^2}{x+2}\right)\)

A=\(\left(\dfrac{x}{x^2-4}-\dfrac{2x+4}{x^2-4}+\dfrac{x-2}{x^2-4}\right)\left(\dfrac{x^2+2x}{x+2}-\dfrac{2x+4}{x+2}+\dfrac{10-x^2}{x+2}\right)\)

A=\(\left(\dfrac{-6}{x^2-4}\right)\left(\dfrac{6}{x+2}\right)\)

A=\(\dfrac{-36}{\left(x-2\right)\left(x+2\right)^2}\)

b, |x|=\(\dfrac{1}{2}\)

TH1z: x≥0 ⇔ x=\(\dfrac{1}{2}\) (TMĐKXĐ)

TH2: x<0 ⇔ x=\(\dfrac{-1}{2}\) (TMĐXĐ)

Thay \(\dfrac{1}{2}\)\(\dfrac{-1}{2}\) vào A ta có:

\(\dfrac{-36}{\left(\dfrac{1}{2}-2\right)\left(\dfrac{1}{2}+2\right)^2}\)=\(\dfrac{96}{25}\)

\(\dfrac{-36}{\left(\dfrac{-1}{2}-2\right)\left(\dfrac{-1}{2}+2\right)^2}\)=\(\dfrac{32}{5}\)

c, A<0 ⇔ \(\dfrac{-36}{\left(x-2\right)\left(x+2\right)^2}\) ⇔ (x-2)(x+2)< 0

⇔   {x-2>0        ⇔      {x>2

     [                           [

       {x+2<0                 {x<2

⇔   {x-2<0        ⇔      {x<2

     [                           [

       {x+2>0                 {x>2

⇔ x<2 

Vậy x<2 (trừ -2)

 

 

 

 

Kim Tuyến
Xem chi tiết
Đỗ Phương Anh
Xem chi tiết
Phuong Anh Do
Xem chi tiết
Lấp La Lấp Lánh
20 tháng 8 2021 lúc 13:11

\(N=\left(a-3b\right)^2-\left(a+3b\right)^2-\left(a-1\right)\left(b-2\right)=\left(a-3b-a-3b\right)\left(a-3b+a+3b\right)-\left(ab-2a-b+2\right)=\left(-6b\right).2a-ab+2a+b-2=2a+b-13ab-2\)

Thay \(a=\dfrac{1}{2};b=-3\) vào N ta được: \(N=2a+b-13ab-2=2.\dfrac{1}{2}-3-13.\dfrac{1}{2}.\left(-3\right)-2=\dfrac{31}{2}\)

Nguyễn Lê Phước Thịnh
20 tháng 8 2021 lúc 13:28

Ta có: \(N=\left(a-3b\right)^2-\left(a+3b\right)^2-\left(a-1\right)\left(b-2\right)\)

\(=a^2-6ab+9b^2-a^2-6ab-9b^2-ab+2a+b-2\)

\(=-13ab+2a+b-2\)

\(=-13\cdot\dfrac{1}{2}\cdot\left(-3\right)-1-3-2\)

\(=\dfrac{27}{2}\)

Tô Mì
20 tháng 8 2021 lúc 14:27

\(N=\left(a-3b\right)^2-\left(a+3b\right)^2-\left(a-1\right)\left(b-2\right)\)

\(=a^2-6ab+9b^2-a^2-6ab-9b^2-ab+2a+b-2\)

\(=-13ab+2a+b-2\)

Thay \(a=\dfrac{1}{2};b=-3\) vào bt N được

\(N=\left(-13\right)\cdot\dfrac{1}{2}\cdot\left(-3\right)+2\cdot\dfrac{1}{2}+\left(-3\right)-2\)

\(=\dfrac{31}{2}\)

Vậy: Giá trị của N tại \(a=\dfrac{1}{2};b=-3\) là \(\dfrac{31}{2}\)

Kim Tuyến
Xem chi tiết
Lê Thị Hồng Vân
9 tháng 6 2021 lúc 15:56

a, ĐKXĐ: \(x\ne1;x\ne-1\)

b, Với \(x\ne1;x\ne-1\)

\(B=\left[\dfrac{x+1}{2\left(x-1\right)}+\dfrac{3}{\left(x-1\right)\left(x+1\right)}-\dfrac{x+3}{2\left(x+1\right)}\right]\cdot\dfrac{4\left(x^2-1\right)}{5}\\ =\left[\dfrac{x^2+2x+1+6-x^2-2x+3}{2\left(x-1\right)\left(x+1\right)}\right]\cdot\dfrac{4\left(x^2-1\right)}{5}\\ =\dfrac{5}{x^2-1}\cdot\dfrac{4\left(x^2-1\right)}{5}\\ =4\)

=> ĐPCM

★彡✿ทợท彡★
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 5 2022 lúc 20:45

a: \(=\dfrac{99}{100}:\left(\dfrac{3}{12}-\dfrac{1}{12}+\dfrac{4}{12}\right)-\dfrac{49}{25}\)

\(=\dfrac{99}{100}:\dfrac{1}{2}-\dfrac{49}{25}\)

\(=\dfrac{99}{50}-\dfrac{98}{50}=\dfrac{1}{50}\)

b: \(=\dfrac{13}{15}\cdot\dfrac{1}{4}\cdot3+\left(\dfrac{32}{60}-1-\dfrac{19}{60}\right):\dfrac{47}{24}\)

\(=\dfrac{39}{60}+\dfrac{-19}{60}\cdot\dfrac{24}{47}\)

=459/940