cho tam giac ABC can tai A.ke AH vuong goc voi BC
CMR
1,HB=HC
2,AH la tia phan giac cua goc BAC
cho tam giac abc can tai a ke ah vuong goc bc a chung minh ha =hc va ah la tia phan giac cua bac
a,
+)t/có:△ABC cân A
=>AB=AC
và góc B=góc C
+)xét △ABH và △ACH
có:góc AHB= gócAHB(=900)
AB=AC(cmt)
góc B = góc C(cmt)
=>△ABH=△ACH
b,
+)ta lại có△ABH=△ACH
=>góc BAH=góc CAH
=>AH là tia pg góc A
cho tam giac ABC can tai A (AB>BC) va BD vuong goc voi AC tai B CE vuong goc voi AB tai E a.tam giac DABtam giac ADE can b. goi H la giao diem cua BD va CE. chung minh AH la tia phan giac BAC c.chung minh AH>CH
cho tam giac ABC vuong tai A duong cao AH ten tia HC lay diem D sao cho HD=HB
a) Tam giac ABC la tam giac gi Vi sao . Neu goc C=30 thi tam giac ABD la tam giac gi
b) Tu Cve duong thang vuong goc voi tia AD tai M . CM: CB la tia phan giac ACM
c) Tia AH cat CM tai Q . CM tam giac ACQ can
d) CM: QD vuong goc voi AC
a: Xét ΔABD có
AH là đường cao
AH là đường trung tuyến
DO đó; ΔABD cân tại A
b: Ta có: \(\widehat{MCB}=90^0-\widehat{CDM}\)
\(\widehat{ACB}=90^0-\widehat{ABC}=90^0-\widehat{ADH}=90^0-\widehat{CDM}\)
=>góc MCB=góc ACB
hay CB là phân giác của góc AMC
c: Xét ΔCAQ có
CH là đường phân giác
CH là đường cao
Do đó: ΔCAQ cân tại C
cho tam gia ABC can tai A, AH la tia phan giac cua gocA (H thuocBC)
a, chung minh hb=hc
b,ke hd vuong goc voi ab ke eh vuong goc voi ac chung minh tam giac hde can
a)
ta có: tam giác ABC cân tại A suy ra AB=AC; B=C
xét tam giác ABH và tam giác ACH có:
AB=AC(gt)
AH(chung)
BAH=CAH(gt)
suy ra tam giác ABH= tam giac ACH(c.g.c)
suy ra BH=CH(đfcm)
b)
xét 2 tam giác vuông ADH và AEH có
AH(chung)
DAH=EAH(gt)
suy ra tam giác DAH=EAH(CH-GN)
suy ra HD=HE suy ra tam giác HDE cân tại H(đfcm)
Cho tam giac ABC can tai A ke AH vung goc voi BC (H thuoc BC )
a, Chung minh AH la tia phan giac cua goc BAC
b, Ke HD vuong goc voi AB ( D thuoc AB) , HE vuong goc voi AC ( E thuoc AC). Chung minh tam giac HDE can
c, Neu cho AB = 29 cm , AH = 20 cm .Tinh do dai BC
d,Chung minh BC//DE
e, Neu cho goc BAC =120 do thi tam giac HDE tro thanh tam giac gi ? Vi sao
cho tam giac abc ,ab<ac.ve duong cao ah . tren ac lay e sao cho ae =ab .ke ei vuong goc voi ah tai i,tia phan giac cua goc bac cat be tai m chung minh :atam giac abm la tam giac vuong can
b ie = ah
c goc ahm = 45 do
cho tam giac abc vuong tai a co db la duong phan giac ke ae vuong goc voi bd [e thuoc bd ] ae cat bc o k hay chung minh dieu nay nhe +chung minh tam giac abk can +chung minh dk vuong goc voi bc +ke ah vuong goc voi bc chung minh ak la tia phan giac cua goc hac +goi i la giao diem cua ah va bd chung minh ik song song voi ac
bài này mình làm rồi nhé bạn.Để mình chỉ cho bạn nha
1)Xét tam giác BAE và tam giác BKE:
BEA = BEK = 90 độ
BE chung
ABE = KBE ( BE là phân giác của B )
=> Tam giác BAE = Tam giác BKE( g-c-g)
=> BA = BK( 2 cạnh tương ứng)
=> Tam giác ABK cân ở B
2)Xét tam giác ABD và tam giác KBD:
BA = BK ( cm trên)
ABD = KBD ( BD là phân giác của B)
BD chung
=> Tam giác ABD = Tam giác KBD ( c-g-c)
=> BAD = BKD = 90 độ
=>KDB = KDC = 90 độ
=> KD vuông góc với BC
3) Ta thấy : BAD + ADB + DBA = 180 độ
=> ADB + DBA = 90 độ (1)
Mà AIE = BIH ( 2 góc đối đỉnh)
Mà BIH + IHB +HBI = 180 độ
=> BIH + HBI = 90 độ (2)
Mà DBA = HBI ( BD là phân giác của B ) (3)
Từ (1),(2) và (3) => AID = ADI (4)
=> Tam giác DAI cân ở A
=> AI = AD
Xét tam giác vuông IAE (vuông ở E) và tam giác vuông DAE( vuông ở E)
AI = AD
AE chung
=> tam giác IAE = tam giác DAE(ch-cgv)
=> DAE = IAE ( 2 góc tương ứng)
=> AE là phân giác IAD
=> AK là phân giác HAC
4) Xét tam giác IAE và tam giác KAE:
AEI = KEI
EI chung
AE=EK(2 cạnh tương ứng)
=> Tam giác IAE = Tam giác KAE
=> AIE = KIE ( 2 góc tương ứng) (5)
Từ (4) và (5) =>KIE = EAD
Mà 2 góc này ở vị trí so le trong
=> IK song song với AC
Mình làm bài này là để bạn hiểu nha ko hiểu thì nói mình
(Dấu gạch ngang trên đầu thay cho dấu góc)
HUHUHUHU....... Lúc làm bài kiểm tra chưa nghĩ ra,h mới nghĩ ra
cho tam giac ABC v uong tai A (AB < AC ) , ke AH vuong goc voi BC tai H . tren canh AC lay diem I sao cho AH =AI . qua I ke duong thang vuong goc voi A C , cat BC tai D
a, CMR : tam giac AHD = tam giac AID va` AD la tia phan giac cua ∠HAC
b, tia ID cat tia AH tai M . CMR △MCD can
c, go.i N la` trung diem cua MC . CMR AN,MI,BC do^`ng quy
a: Xét ΔAHD vuông tại H và ΔAID vuông tại I có
AD chung
AH=AI
=>ΔAHD=ΔAID
=>góc HAD=gócIAD
=>AD là phân giác của góc HAI
b: Xét ΔDHM vuông tại H và ΔDIC vuông tại I có
DH=DI
góc HDM=góc IDC
=>ΔDHM=ΔDIC
=>DM=DC
=>ΔDMC cân tại D
c: AH+HM=AM
AI+IC=AC
mà AH=AI và HM=IC
nên AM=AC
=>ΔAMC cân tại A
mà AN là trung tuyến
nên AN vuông góc MC
Xét ΔCAM có
AN,MI,CH là các đường cao
=>AN,MI,CH đồng quy
cho tam giac ABC can tai A; AB=AC=5cm, BC=6cm. ke AH vuong goc voi BC
chung minh rang: HB=HC; BAH=CAH
tinh do dai AH
ke HD vuong goc voi AB; HE vuong goc voi AC. chung minh rang tam giac HDE la tam giac can
Hình bạn tự vẽ nhé ! ( Bạn thay các chữ cái bằng kí tự nhé !)
a) Do AH vuông góc với BC nên:
Góc AHB= Góc AHC=90 độ
Ta có: Góc BAH= 90 độ- góc B(1)
Góc CAH=90 độ- góc C(2)
Lại dó: Góc B=Góc C( Do tam giác ABC cân tại A)(3)
Kết hợp (1), (2), (3), ta suy ra: Góc BAH= Góc CAH
Xét tam giác ABH và tam giác ACH, có:
Góc BAH= Góc CAH( CM trên)
Chung AH
Góc AHB=Góc AHC( Đều bằng 90 độ)
=> Tam giác ABH=Tam giác ACH( G-c-g)
Khi đó: HB=HC( Cặp cạnh tương ứng)
-------> ĐPCM