3n+2 - 2n+2+3n-2n chia hết cho 10(n thuộc N*)
Tìm n thuộc N, biết:
1) 2n+3 chia hết 3n+1
2)2n-2 chia hết cho n-1
3) 5n-1 chia hết cho n-2
4)3n+1 chia hết cho 2n+2
5)2n-1 chia hết cho 5n-3
6)n-3 chia hết cho n+4
7) 3n+3 chia hết cho n+2
8)4n chia hết cho n-3
9)5n+1 chia hết cho n+3
10)2n-2 chia hết cho n+3
2) Ta có : 2n - 2 = 2(n - 1) chia hết cho n - 1
Nên với mọi giá trị của n thì 2n - 2 đều chia hết cho n - 1
3) Ta có : 5n - 1 chia hết chi n - 2
=> 5n - 10 + 9 chia hết chi n - 2
=> 5(n - 2) + 9 chia hết chi n - 2
=> n - 2 thuộc Ư(9) = {1;3;9}
Ta có bảng :
n - 2 | 1 | 3 | 9 |
n | 3 | 5 | 11 |
1) Ta có : 2n + 3 chia hết cho 3n + 1
<=> 6n + 9 chia hết cho 3n + 1
<=> 6n + 2 + 7 chia hết cho 3n + 1
=> 7 chia hết cho 3n + 1
=> 3n + 1 thuộc Ư(7) = {1;7}
Ta có bảng :
3n + 1 | 1 | 7 |
3n | 0 | 6 |
n | 0 | 2 |
Vậy n thuộc {0;2}
Tìm n thuộc N, biết:
1) 2n+3 chia hết 3n+1
2)2n-2 chia hết cho n-1
3) 5n-1 chia hết cho n-2
4)3n+1 chia hết cho 2n+2
5)2n-1 chia hết cho 5n-3
6)n-3 chia hết cho n+4
7) 3n+3 chia hết cho n+2
8)4n chia hết cho n-3
9)5n+1 chia hết cho n+3
10)2n-2 chia hết cho n+3
Ta có n-3=n+4-7
6)=>n-4+7 chia hết cho n+4
=>7 chia hết cho n+4
=> n+4 thuộc Ư(7)
=> n+4 thuộc {1, -1,7,-7}
=> n thuộc {-3,-5,3,-11}
1. tìm n thuộc Z biết :
a, 7 chia hết cho n+2
b, n-2 là ước của -5
c, -10 là bội 2n-1
2.tìm n thuộc Z biết:
2n-5 chia hết cho n+1 và n+1 chia hết cho 2n-5
3n+2 chia hết cho n-2 và n-2 chia hết cho 3n+2
Tìm n thuộc N:
1) 3n + 5 chia hết cho n - 4
2) 6n + 7 chia hết cho 3n - 1
3) 4n + 8 chia hết cho 3n - 2
4) 2n - 7 chia hết cho n + 2
5) 3n - 4 chia hết cho 3 - n
6) 2n - 5 chia hết cho n + 1
7) 3n - 7 chia hết cho 2n + 3
8) n - 5 chia hết cho n - 1
1: =>3n-12+17 chia hết cho n-4
=>\(n-4\in\left\{1;-1;17;-17\right\}\)
hay \(n\in\left\{5;3;21;-13\right\}\)
2: =>6n-2+9 chia hết cho 3n-1
=>\(3n-1\in\left\{1;-1;3;-3;9;-9\right\}\)
hay \(n\in\left\{\dfrac{2}{3};0;\dfrac{4}{3};-\dfrac{2}{3};\dfrac{10}{3};-\dfrac{8}{3}\right\}\)
4: =>2n+4-11 chia hết cho n+2
=>\(n+2\in\left\{1;-1;11;-11\right\}\)
hay \(n\in\left\{-1;-3;9;-13\right\}\)
5: =>3n-4 chia hết cho n-3
=>3n-9+5 chia hết cho n-3
=>\(n-3\in\left\{1;-1;5;-5\right\}\)
hay \(n\in\left\{4;2;8;-2\right\}\)
6: =>2n+2-7 chia hết cho n+1
=>\(n+1\in\left\{1;-1;7;-7\right\}\)
hay \(n\in\left\{0;-2;6;-8\right\}\)
Tìm n thuộc N:
1-3n chia chết cho 2n+1
2-7n chia hết cho 2n+5
4n+9 chia hết cho 3n+1
n2+2n+7 chia hết cho n+2
n2+n+1 chia hết cho n+1
a) ta có: 1 -3n chia hết cho 2n +1
=> 2 - 6n chia hết cho 2n +1
=> 5 - 3 - 6n chia hết cho 2n +1
5 - 3.(1+2n) chia hết cho 2n + 1
...
bn tự làm tiếp đk r
b) ta có: 2-7n chia hết cho 2n + 5
=> 4 - 14n chia hết cho 2n + 5
=> 39 - 35 - 14n chia hết cho 2n + 5
39 - 7.(5+2n) chia hết cho 2n +5
...
c) ta có: 4n + 9 chia hết cho 3n + 1
=> 12n + 27 chia hết cho 3n + 1
12n + 4+23 chia hét cho 3n + 1
4.(3n+1) + 23 chia hết cho 3n + 1
...
d) ta có: n^2 + 2n + 7 chia hết cho n+2
=> n.(n+2) + 7 chia hết cho n + 2
....
e) ta có: n^2 + n + 1 chia hết cho n + 1
=> n.(n+1) + 1 chia hết cho n + 1
...
Tìm n thuộc Z biết :
a)n+7 chia hết cho n+2
b) 3n+7 chia hết cho 2n+1
c)n^2+25 chia hết cho n+2
d)3n^2+5 chia hết cho n-1
e)2n^2+11 chia hết cho 3n+1
\(a)n+7⋮n+2\)
\(\Rightarrow n+2+5⋮n+2\)
Mà n + 2 chia hết cho n + 2 => \(5⋮n+2\)=> n + 2 thuộc Ư\((5)\)\(=\left\{\pm1;\pm5\right\}\)
Lập bảng :
n + 2 | 1 | -1 | 5 | -5 |
n | -1 | -3 | 3 | -7 |
Vậy : ...
1 tìm n thuộc z biết
a, 7 chia hết n-2
2 tìm n thuộc z biết
a, 2n+5 chia hết cho n-1
b, n+3 chia hết cho 2n -1
3 tìm n thuộc z biết
a, 2n-5 chia hết cho n+1 và n+1 chia hết cho 2n+5
b, 3n+2 chia hết cho n-2 và n-2 chia hết cho 3n+2
Tim n thuộc Z
a.12 chia hết cho 2n+1
b.n-1 chia hết cho n+1
c.3n+5 chia hết cho n+2
d.3n+2 chia hết cho 2n+3
Ai Nhanh Mình ticks 10 ticks vì mình có 10 nick
Thật đấy
\(12⋮2n+1\Rightarrow2n+1\inƯ\left(12\right)\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)
Vì 2n +1 chia 2 dư 1 nên \(2n+1\in\left\{\pm1;\pm3\right\}\)
\(\Rightarrow n\in\left\{0;-1;1;-2\right\}\)
làm tiếp
\(3n+5⋮n+2\Rightarrow3\left(n+2\right)+3⋮n+2\)
\(\Rightarrow3⋮n+2\Rightarrow n+2\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
\(\Rightarrow n\in\left\{-1;-3;1;-5\right\}\)
a. 12 chia hết cho 2n+1
\(\Rightarrow2n+1\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)
\(\Rightarrow n\in\left\{0;\pm1;\pm2\right\}\)
b. n-1 chia hết cho n+1
\(\Rightarrow\left(n+1\right)-2⋮n+1\)
\(\Rightarrow n+1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
\(\Rightarrow n\in\left\{0;1;-2;-4\right\}\)
c. 3n+5 chia hết cho n+2
\(\Rightarrow3\left(n+2\right)-1⋮n+2\)
\(\Rightarrow n+2\inƯ\left(1\right)=\left\{\pm1\right\}\)
\(\Rightarrow n\in\left\{-3;-1\right\}\)
d. 3n+2 chia hết cho 2n+3
\(\Rightarrow6n+4⋮2n+3\)
\(\Rightarrow3\left(2n+3\right)-5⋮2n+3\)
\(\Rightarrow2n+3\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
\(\Rightarrow n\in\left\{\pm1;-2;-4\right\}\)
Chứng minh : (2n+1)(n^2-3n-1)-2n^3+1 chia hết cho 10 (mọi n đều thuộc Z)
\(\left(2n+1\right)\left(n^2-3n-1\right)-2n^3+1\)
\(=2n^3-6n^2-2n+n^2-3n-1-2n^3+1\)
\(=-5n^2-5n=-5n\left(n+1\right)\)
Vì n và n+1 là 2 số nguyên liên tiếp nên n(n+1) chia hết cho 2 \(=>-5n\left(n+1\right)⋮10\)
Vậy (2n+1)(n^2-3n-1)-2n^3+1 chia hết cho 10 với mọi n đều thuộc Z
1. Tìm n thuộc Z để giá trị của biểu thức A= n^3 + 2n^2 - 3n + 2 chia hết cho giá trị của biểu thức B= n^2 - n
2.a. Tìm n thuộc N để n^5 + 1 chia hết cho n^3 + 1
b. Giải bài toán trên nếu n thuộc Z
3. Tìm số nguyên n sao cho:
a. n^2 + 2n - 4 chia hết cho 11
b. 2n^3 + n^2 + 7n + 1 chia hết cho 2n - 1
c.n^4 - 2n^3 + 2n^2 - 2n + 1 chia hết cho n^4 - 1
d. n^3 - n^2 + 2n + 7 chia hết cho n^2 + 1
4. Tìm số nguyên n để:
a. n^3 - 2 chia hết cho n - 2
b. n^3 - 3n^2 - 3n - 1 chia hết cho n^2 + n + 1
c. 5^n - 2^n chia hết cho 63