Cho a,b,c,d >0. C/m 1 <\(\dfrac{a}{a+b+c}+\dfrac{b}{b+c+d}+\dfrac{c}{c+d+a}+\dfrac{d}{d+a+b}\) > 2
Bài 1
a) Cho ba số a, b, c dương . Chứng tỏ rằng M = a/a+b + b/b+c + c/a+c không là số nguyên
b) Cho tỉ lệ thức a/b =c/d ( b,d khác 0 ; a khác -c ; b khác -d ) . Chứng minh: (a+b/c+d)^2 = a^2+b^2/c^2+d^2
c) Cho 1/c = 1/2(1/a+1/b) (Với a, b, c khác 0; b khác c). Chứng minh rằng: a/b=a-c/c-b
Cho a, b, c, d > 0 và a + b + c + d = 4. Tìm Min M = 1/(a^2 + 1) + 1/(b^2 + 1) + 1/(c^2 + 1) + 1/(d^2 + 1)
Cho a, b, c, d > 0 và a + b + c + d = 4. Tìm Min M = 1/(a^2 + 1) + 1/(b^2 + 1) + 1/(c^2 + 1) + 1/(d^2 + 1)
Ta có:\(\frac{1}{a^2+1}=1-\frac{a^2}{a^2+1}>=1-\frac{a^2}{2a}=1-\frac{a}{2}\)
Tương tự \(\frac{1}{b^2+1}>=1-\frac{b}{2}\)
1/(c^2+1)>=1-c/2
Bài 1: cho a,b,c,d thuộc z', >0 t/m : a+b=c+d=2015
Tìm max cua a/b +c/d
Bài 2: cho a,b,c,d thuộc z', >0 t/m : a+b=c+d=2016
Tìm min cua (a+b)/(a.c + b.c)
Cho a;b;c;d>0 thỏa mãn: a+b+c+d=4. Tìm min của:
\(\sqrt{a^2+\dfrac{1}{b^2}}+\sqrt{b^2+\dfrac{1}{c^2}}+\sqrt{c^2+\dfrac{1}{d^2}}+\sqrt{d^2+\dfrac{1}{a^2}}\)
Áp dụng bđt Mincopxki và Cauchy-Schwarz:
\(VT=\sqrt{a^2+\dfrac{1}{b^2}}+\sqrt{b^2+\dfrac{1}{c^2}}+\sqrt{c^2+\dfrac{1}{d^2}}+\sqrt{d^2+\dfrac{1}{a^2}}\)
\(\ge\sqrt{\left(a+b+c+d\right)^2+\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{d}\right)^2}\)
\(\ge\sqrt{\left(a+b+c+d\right)^2+\left(\dfrac{16}{a+b+c+d}\right)^2}\)
\(=\sqrt{3^2+\dfrac{16^2}{3^2}}=\sqrt{\dfrac{337}{9}}\)
\("="\Leftrightarrow a=b=c=d=\dfrac{3}{4}\)
Lời giải:
Áp dụng BĐT Bunhiacopxky:
\(\left(a^2+\frac{1}{b^2}\right)(1+1)\geq (a+\frac{1}{b})^2\)
\(\Rightarrow \sqrt{a^2+\frac{1}{b^2}}\geq \frac{a+\frac{1}{b}}{\sqrt{2}}\)
Hoàn toàn tương tự với các phân thức còn lại và cộng theo vế:
\(\sqrt{a^2+\frac{1}{b^2}}+\sqrt{b^2+\frac{1}{c^2}}+\sqrt{c^2+\frac{1}{d^2}}+\sqrt{d^2+\frac{1}{a^2}}\geq \frac{1}{\sqrt{2}}(a+b+c+d+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d})\)
Mặt khác theo BĐT Cauchy:
\(a+\frac{1}{a}\geq 2; b+\frac{1}{b}\geq 2; c+\frac{1}{c}\geq 2; d+\frac{1}{d}\geq 2\)
\(\Rightarrow \text{VT}\geq \frac{1}{\sqrt{2}}.8=4\sqrt{2}\)
Vậy giá trị nhỏ nhất của biểu thức là $4\sqrt{2}$. Dấu bằng xảy ra khi $a=b=c=d=1$
Bài 1:Cho 2 soos hữu tỷ a/b , c/d (b > 0 , d > 0) . Chứng minh rằng a/b < c/d nếu a/d < b/c và ngược lại.
Bài 2: Chứng minh nếu a/b < c/d (b > 0, d >0) thì : a/b < a+c/ b+d < c/d.
giúp mình với mình đang cần gấp lắm
B1: Ta có :a/b < c/d
=>ad/bd < bc/ba
=>ad < bc
Câu 1:Cho các số hữu tỉ x =a/b; y = c/d ; z = m/n. Biết ad-bc = 1; cn - dm = 1 ; b,d,n > 0
a) Hãy so sánh các số x,y,z
b) So sánh y với t biết t = a+m /b+n với b+n khác 0
Câu 2: Cho 6 số nguyên dương a<b<c<d<m<n
Chứng minh rằng a+c+m / a+b+c+d+m+n < 1/2.
1 . Cho các số hữu tỉ x, y, z : x=a/b ; y= c/d ; z= m/n . trong đó : m= a+c/2 ; n= b+d/2. biết x = y. hãy so sánh x với z;y ?
2 . cho các số hữu tỉ x, y, z : x=a/b ; y= c/d ; z= m/n . biết ad-bc=1; cn-dm = 1 ; b,d,n >0
a ) So sánh các số x,y,z
b ) Cho t = a+m /b+n (b+n khác 0 ). So sánh y với t
3. Cho 6 số nguyên dương a<b<c<d<m<n . Chứng minh rằng a+c+m /a+b+c+d+m+n
1) Cho a/b = b/c = c/d = d/a ( với a,b,c,d khác 0 . Tính giá trị biểu thức :
M = (a+b)/(c+d) + (b+c)/(d+a) +(c+d)/(a+b)+(d+a)/(d+c)
2) Cho a/b = c/d. Chứng minh rằng :
7a^2 + 3ab/11a^2 - 8b^2 = 7c^2 + 3cd/11c^2 - 8d^2
Câu 2:
Đặt a/b=c/d=k
=>a=bk; c=dk
\(\dfrac{7a^2+3ab}{11a^2-8b^2}=\dfrac{7b^2k^2+3bk\cdot b}{11\cdot b^2k^2-8b^2}=\dfrac{7b^2k^2+3b^2k}{11b^2k^2-8b^2}=\dfrac{7k^2+3k}{11k^2-8}\)
\(\dfrac{7c^2+3cd}{11c^2-8d^2}=\dfrac{7\cdot d^2k^2+3\cdot dk\cdot d}{11\cdot d^2k^2-8d^2}=\dfrac{7k^2+3k}{11k^2-8}\)
Do đó: \(\dfrac{7a^2+3ab}{11a^2-8b^2}=\dfrac{7c^2+3cd}{11c^2-8d^2}\)