Tính tổng
A=5+52+53+.....+550
D=1.4+2.5+3.6+...+100.103
Tính : 1.4+2.5+3.6+4.7+...+100.103
Đặt \(A=1.4+2.5+3.6+...+100.103\)
\(=1\left(2.2\right)+2\left(3+2\right)+3\left(4+2\right)+...+100\left(101+2\right)\)
\(=1.2+2.3+3.4+...+100.101+\left(1.2+2.2+3.2+...+100.2\right)\)
\(=1.2+2.3+3.4+...+100.101+2\left(1+2+3+...+100\right)\)
\(=1.2+2.3+3.4+...+100.101+2.100\left(100+1\right):2\)
\(=1.2+2.3+3.4+...+100.101+10100\)
Đặt \(B=1.2+2.3+3.4+...+100.101\)
\(\Rightarrow3B=1.2.3+2.3.3+3.4.3+100.101.3\)
\(\Rightarrow3B=1.2.3+2.3\left(4-1\right)+3.4\left(5-2\right)+...+100.101\left(102-99\right)\)
\(\Rightarrow3B=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+100.101.102-99.100.101\)
\(\Rightarrow3B=100.101.102\)
\(\Rightarrow B=343400\)
Khi đó \(A=343400=10100=333300\)
Đặt A = 1.4 + 2.5 + 3.6 + 4.7 + ... + 100.103
3A = 3.(1.2 + 2.3 + 3.4 + ... + 100.101] + 3.(2 + 4 + 6 + ... + 200)
= 1.2.3 + 2.3.3 + 3.4.3 + ... + 100.101.3 + 3.(2 + 4 + 6 + ... + 200)
\(\Rightarrow\) A = 100.101.105:3 = 353500
Tính : 1.4+2.5+3.6+4.7+...+100.103
Tính nhanh: 1.4+2.5+3.6+.....+100.103
Đặt A = 1.4 + 2.5 + 3.6 + ... + 100.103
= 1.(2 + 2) + 2.(3 + 2) + 3.(4 + 2) +.... + 100.(101 + 2)
= 1.2 + 2.3 + 3.4 + ... + 100.101 + (1.2 + 2.2 + 3.2 + ... + 100.2)
= 1.2 + 2.3 + 3.4 + ... + 100.101 + 2(1 + 2 + 3 + .... + 100)
= 1.2 + 2.3 + 3.4 + .... + 100.101 + 2.100.(100 + 1) : 2
= 1.2 + 2.3 + 3.4 + ... + 100.101 + 10100
Đặt B = 1.2 + 2.3 + 3.4 + .... + 100.101
=> 3B = 1.2.3 + 2.3.3 + 3.4.3 + .... + 100.101.3
=> 3B = 1.2.3 + 2.3.(4 - 1) + 3.4.(5 - 2) + ... + 100.101.(102 - 99)
=> 3B = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + .... + 100.101.102 - 99.100.101
=> 3B = 100.101.102
=> B = 343400
Khi đó A = 343400 - 10100 = 333300
bạn tính kiểu khác đc ko ? kiểu ab mình ko hiểu lắm
1.4+ 2.5+ 3.6+ 4.7+ ... +100.103
tinh B=1.4+2.5+3.6+............+100.103
tinh ; 1.4 + 2.5 + 3.6 + 4.7 + … + 100.103
(1+2/1.4).(1+2/2.5).(1+2/3.6)....(1+2/100.103)
Thực hiện phép tính:
A=1.99+2.98+3.97+...+98.2+99.1
B=1.2.3+2.3.4+3.4.5+...+17.28.19
C=1.4+2.5+3.6+...+100.103
D=1.3+2.4+3.5+...+97.99+98.100
Ta có: \(A=1\cdot99+2\cdot98+3\cdot97+\cdots+98\cdot2+99\cdot1\)
\(=2\left(1\cdot99+2\cdot98+\cdots+49\cdot51\right)+50\cdot50\)
\(=2\left\lbrack1\left(100-1\right)+2\left(100-2\right)+\cdots+49\left(100-49\right)\right\rbrack+2500\)
\(=2\cdot\left\lbrack100\left(1+2+\cdots+49\right)-\left(1^2+2^2+\cdots+49^2\right)\right\rbrack+2500\)
\(=2\cdot\left\lbrack100\cdot\frac{49\cdot50}{2}-\frac{49\cdot\left(49+1\right)\left(2\cdot49+1\right)}{6}\right\rbrack+2500\)
\(=2\left\lbrack50\cdot49\cdot50-\frac{49\cdot50\cdot99}{6}\right\rbrack+2500\)
\(=2\cdot\left\lbrack49\cdot50\cdot50-49\cdot25\cdot33\right\rbrack+2500\)
\(=2\cdot49\cdot25\cdot\left(2\cdot50-33\right)+2500\)
\(=49\cdot50\cdot67+2500=166650\)
Ta có: \(B=1\cdot2\cdot3+2\cdot3\cdot4+\ldots+17\cdot18\cdot19\)
\(=2\left(2-1\right)\left(2+1\right)+3\left(3-1\right)\left(3+1\right)+\cdots+18\left(18-1\right)\left(18+1\right)\)
\(=2\cdot\left(2^2-1\right)+3\left(3^2-1\right)+\cdots+18\left(18^2-1\right)\)
\(=\left(2^3+3^3+\cdots+18^3\right)-\left(2+3+\cdots+18\right)\)
\(=\left(1^3+2^3+\cdots+18^3\right)-\left(1+2+3+\cdots+18\right)\)
\(=\left(1+2+\cdots+18\right)^2-\left(1+2+\cdots+18\right)\)
\(=\left(18\cdot\frac{19}{2}\right)^2-18\cdot\frac{19}{2}=\left(9\cdot19\right)^2-9\cdot19=29070\)
Ta có: \(C=1\cdot4+2\cdot5+\cdots+100\cdot103\)
\(=1\left(1+3\right)+2\left(2+3\right)+\cdots+100\cdot\left(100+3\right)\)
\(=\left(1^2+2^2+\cdots+100^2\right)+3\left(1+2+\cdots+100\right)\)
\(=\frac{100\left(100+1\right)\left(2\cdot100+1\right)}{6}+\frac{3\cdot100\cdot101}{2}\)
\(=\frac{100\cdot101\cdot201}{6}+\frac{3\cdot100\cdot101}{2}=50\cdot101\cdot67+3\cdot50\cdot101\)
\(=50\cdot101\cdot70=3500\cdot101=353500\)
Ta có: \(D=1\cdot3+2\cdot4+3\cdot5+\cdots+97\cdot99+98\cdot100\)
\(=1\left(1+2\right)+2\left(2+2\right)+3\left(3+2\right)+\cdots+97\cdot\left(97+2\right)+98\cdot\left(98+2\right)\)
\(=\left(1^2+2^2+\cdots+98^2\right)+2\cdot\left(1+2+3+\cdots+98\right)\)
\(=\frac{98\cdot\left(98+1\right)\left(2\cdot98+1\right)}{6}+2\cdot\frac{98\cdot99}{2}\)
\(=\frac{98\cdot99\cdot197}{6}+98\cdot99=49\cdot33\cdot197+98\cdot99=49\cdot33\left(197+2\cdot3\right)\)
\(=49\cdot33\cdot203=328251\)
Tính tổng
A = 1 + 5 + 52 + 53 + .... + 52022
B = 6 + 62 + 63 + ..... + 640
C = 42 + 44 + ..... + 414
D = 3 + 33 + 35 + ..... + 325
a: 5A=5+5^2+...+5^2023
=>4A=5^2023-1
=>A=(5^2023-1)/4
b: 6B=6^2+6^3+...+6^41
=>5B=6^41-6
=>B=(6^41-6)/5
c: 16C=4^4+4^6+...+4^16
=>15C=4^16-4^2
=>C=(4^16-4^2)/15
d: 9D=3^3+3^5+...+3^27
=>8D=3^27-3
=>D=(3^27-3)/8