Chứng Minh Rằng:
Nếu 2a+3b chia hết cho 7 thì 8a+5b chia hết cho 7
Cho a,b là các số nguyên, chứng minh rằng: nếu (2a+3b) chia hết 7 thì (8a + 5b) chia hết 7
Giả sử: abc¯¯¯¯¯¯¯+(2a+3b+c)abc¯+(2a+3b+c)chia hết cho7, ta có:
abc¯¯¯¯¯¯¯+(2a+3b+c)=a.100+b.10+c+2a+3b+c=a.98+7.babc¯+(2a+3b+c)=a.100+b.10+c+2a+3b+c=a.98+7.b
Vì a.98a.98 chia hết cho 7(98 chia hết cho 7)7.b7.b chia hết cho 7 ⇒a.98+b.7⇒a.98+b.7 chia hết cho 7
⇒abc¯¯¯¯¯¯¯+(2a+3b+c)⇒abc¯+(2a+3b+c)chia hết cho 7
Mà theo đầu đề bài abc¯¯¯¯¯¯¯abc¯chia hết cho 7 => 2a+3b+c chia hết cho 7
Ta có : 2a+3b\(⋮\)7
\(\Rightarrow\)4(2a+3b)\(⋮\)7
\(\Rightarrow\)8a+12b\(⋮\)7
\(\Rightarrow\)8a+5b+7b\(⋮\)7
Vì 7b\(⋮\)7
\(\Rightarrow\)8a+5b\(⋮\)7
Vậy 8a+5b\(⋮\)7.
cho a,b là các số nguyên. Chứng minh rằng: 2a+3b chia hết cho 7 thì 8a+5b chia hết cho 7 và ngược lại
- Nếu \(2a+3b⋮7\Rightarrow4\left(2a+3b\right)⋮7\Rightarrow8a+12b⋮7\)
\(\Rightarrow8a+5b+7b⋮7\)
Mà \(7b⋮7\) với mọi b nguyên \(\Rightarrow8a+5b⋮7\)
- Nếu \(8a+5b⋮7\), do \(7b⋮7\Rightarrow8a+5b+7b⋮7\Rightarrow8a+12b⋮7\)
\(\Rightarrow4\left(2a+3b\right)⋮7\)
Mà 4 và 7 nguyên tố cùng nhau \(\Rightarrow2a+3b⋮7\)
câu thứ 2
a - 5b chia hết cho 17 thì 10a-50b chia hết cho 17
10a-50b=10a+b-51b
51b chia hết cho 17 nên 10a+b chia hết cho 17
51a : 17
=> 51a - a + 5b : 17
=> 50a + 5b : 17
=> 5 ( 10a + b ) : 17
=> 10a + b : 17
Ta có : tích của 2 và 3 thì chia hết cho 17
=> 10a = 2 x 5 x a + b chia hết cho 17
Những câu dưới bạn tự làm nha
Có: a+5b chia hết cho 7
=> 2.(a+5b)\(⋮\) 7
\(\Leftrightarrow2a+10b⋮7\)
\(\Rightarrow2a+10-7b\) chia hết cho 7 ( do 7b chia hết cho 7 )
\(\Leftrightarrow2a+3b\) chia hết cho 7
=> điều phải chứng minh
cho a,b thuộc N
chứng tỏ
a)nếu 5a+3b chia hết cho 7 thì a+4b chia hết cho 7
b) nếu 2a+3b chia hết cho 17 thì 9a+5b chia hết cho 17
a) a+4b chia hết cho 7 thì 5a+20b cũng chia hết cho 7
vậy (5a+20b)-(5a+3b) chia hết cho 7 nên 17b chia hết cho7
vì 17 không chia hết cho7 nên b phải chia hết cho 7
5a+3b chia hết cho 7 thì 20a+12b cũng chia hết cho 7
a+4b chia hết cho 7 thì 3a +12b cũng chia hết cho 7
vậy (20a+12b)-(3a+12b) chia hết cho7 nên 17a chia hết cho7
vì 17 không chia hết cho7 nên a phải chia hết cho 7
vì a chia hết cho7 và b chia hết cho 7 nên a+4b chia hết cho 7
b) tương tự như câu a
tích mình nhé Kim Chi !
chứng minh rằng
a) nếu 20a + 11b chia hết cho 17 thì 83a + 38b chia hết cho17
b) nếu (2a +3b +4c) chia hết cho 7 thì ( 13a + 2b - 2c ) chia hết cho 7
c) nếu a +4b chia hết cho 13 thì 10a + b chia hết cho 13
d) nếu a + 2b chia hết cho 5 thì 3a - 4b chia hết cho 5
e) nếu a - 5b chia hết cho 17 thì 10a + b chia hết cho 17
Câu trả lời hay nhất: + ta chứng minh a,b,c có ít nhất một số chia hết cho 3
giả sử cả 3 số trên đều không chia hết cho 3
=> a^2 = 1 (mod3) và b^2 = 1 (mod3) (bình phương 1 số chia hết cho 3 hoạc chia 3 dư 1)
=> a^2 + b^2 = 2 (mod3) nhưng c^2 = 1 (mod3) => mâu thuẫn
Vậy có ít nhất 1 số chia hết cho 3
+ tương tự,có ít nhất 1 số chia hết cho 4,vì giả sử cả 3 số a,b,c đều không chia hết cho 4
=> a^2 = 1 (mod4) và b^2 = 1 (mod4) => a^2 + b^2 = 2 (mod 4) nhưng c^2 = 1 (mod 4) => mâu thuẫn
vậy có ít nhất 1 số cgia hết cho 4
+ tương tự a^2 = 1 (mod 5) hoạc a^2 = -1 (mod 5) hoạc a^2 = 4 (mod 5)
và -1 + 1 = 0,1 + 4 = 5,-1 + 4 = 3
=> phải có ít nhất 1 số chia hết cho 5
Vậy abc chia hết cho BCNN(3,4,5) = 60 hay abc chia hết 60
a+5b ⋮ 7
=> 3(a+5b) ⋮7
=> 3a+15b⋮7
=> 3a+15b +7a -14b⋮7
=> 10a+b⋮7
chúc bn hok tốt ^_^
Ta có : 83a + 38b chia hết cho 17
Suy ra : 17a +83a + 38b + 17b chia hết cho 17
Suy ra 100a +55b chia hết cho 17
Suy ra 5×(20a +11b ) chia hết cho 17
Suy ra 20a +11b chia hết cho 17 ( do5 không chia hết cho 17)
Vậy 83a +38b chia hết cho 17 thì 20a +17b chia hết cho 17
Hãy chứng minh rằng:
Nếu : g+3e+2d-c-3b-2a chia hết cho 7 thì: abcdeg chia hết cho 7
abcdeg = 100000a + 10000b + 1000c + 100d + 10e + g = 100002a - 2a + 10003b - 3b + 1001c - c + 98d + 2d + 7e + 3e + g = (100002a + 10003b + 1001c + 98d + 7e) + (g + 3e + 2d - c - 3b - 2a) = 7(14286a + 1429b + 143c + 14d + e) + (g + 3e + 2d - c - 3b - 2a)
Vì 7(14286a + 1429b + 143c + 14d + e) chia hết cho 7, g + 3e + 2d - c - 3b - 2a chia hết cho 7
=> abcdeg chia hết cho 7
Chứng minh rằng
Nếu abc chia hết cho 7 thì 2a + 3b + c chia hết cho 7
Nếu abc - deg chia hết cho 13 thì abcdeg ciha hết cho 13
Ai nhanh nhất mình tick
abc = a . 100 + b . 10 + c
= (a . 98 + b . 7) + 2 . a + 3 . b + a
Ta có : a.98 + b.7 chia hết cho 7
=> 2a + 3b + c chia hết cho 13
cho a,b thuộc Z và 2a + 3b chia hết cho 7.
CMR 8a + 5b chia hết cho 7
Giả sử 8a + 5b \(⋮\) 7 (1)
Vì 2a + 3b \(⋮\) 7 nên 3(2a + 3b) \(⋮\) 7
=> 6a + 9b \(⋮\) 7 (2)
Từ (1) và (2) => (8a + 5b) + (6a + 9b) \(⋮\) 7
=> 8a + 5b + 6a + 9b \(⋮\) 7
=> (8a + 6a) + (5b + 9b) \(⋮\) 7
=> 14a + 14b \(⋮\) 7
=> 7(2a + 2b) \(⋮\) 7
=> Giả sử đúng
Vậy 8a + 5b \(⋮\) 7 (đpcm)