Tìm a,b,c biết (-2a2b3)2+(3b2c4)5=0
tính (rút gọn nếu có)
a) -2x(3x+2)
b) 2/3x(x2-x+4)
c) 5ab(ab-2a2b3)
d) 3x(x-5)
`@` `\text {Ans}`
`\downarrow`
`a)`
`-2x (3x + 2)`
`= -6x^2 - 4x`
`b)`
`2/3x(x^2 - x + 4)`
`= 2/3x^3 - 2/3x^2 + 8/3x`
`c)`
`5ab ( ab - 2a^2b^3)`
`= 5a^2b^2 - 10a^3b^4`
`d)`
`3x(x-5)`
`= 3x^2 - 15x`
Cho A(x)=x^2-10x+25
a)Tính A(0);A(-1)
b)Tìm B(x) biết A(x) +A(x)=6x^2 - 5x+25
c)Tìm C(x) biết A(x) =(x-5) C(x)
d) Tìm nghiệm của B(x)
a) \(A\left(x\right)=x^2-10x+25\)
\(\Rightarrow A\left(x\right)=\left(x-5\right)^2\)
\(\Rightarrow\left\{{}\begin{matrix}A\left(0\right)=\left(0-5\right)^2=25\\A\left(-1\right)=\left(-1-5\right)^2=36\end{matrix}\right.\)
b) \(A\left(x\right)+B\left(x\right)=6x^2-5x+25\)
\(\Rightarrow B\left(x\right)=6x^2-5x+25-A\left(x\right)\)
\(\Rightarrow B\left(x\right)=6x^2-5x+25-\left(x^2-10x+25\right)\)
\(\Rightarrow B\left(x\right)=6x^2-5x+25-x^2+10x-25\)
\(\Rightarrow B\left(x\right)=5x^2+5x\)
\(\Rightarrow B\left(x\right)=5x\left(x+1\right)\)
c) \(A\left(x\right)=\left(x-5\right)C\left(x\right)\)
\(\Rightarrow C\left(x\right)=\dfrac{\left(x-5\right)^2}{x-5}=x-5\left(x\ne5\right)\)
d) Nghiệm của B(x)
\(\Leftrightarrow B=0\)
\(\Leftrightarrow5x\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\) là nghiệm của B(x)
một bể cá dạng hình hộp chữ nhật có chiều dài 1 2 m chiều rộng 0 5 m bên trong có một hòn non bộ đặc có thể thích bằng 0,09m3 nếu đổ vào 150l nước thì hòn non bộ ngập hoàn toàn trong nước . hỏi chiều cao mực nước ở trong bẻ là bao nhiêu
Tìm x, biết:
a) x 4 - 16 x 2 =0; c) x 8 + 36 x 4 =0;
b) ( x - 5 ) 3 - x + 5 = 0; d) 5(x - 2 ) - x 2 + 4 = 0.
tìm a,b,c biết :( -2a^2 b^3 ) ^ 2 + (3b^2 c4 )^5 =0
Lời giải:
Ta thấy:
$(-2a^2b^3)^2\geq 0$ với mọi $a,b$
$(3b^2c^4)^5=3^5(b^5c^{10})^2\geq 0$ với mọi $b,c$
Do đó để tổng của chúng bằng $0$ thì:
$-2a^2b^3=b^5c^{10}=0$
$\Rightarrow ab=bc=0$
$\Rightarrow$ (a,b,c)=(a,0,c), (0,b,0)$
Tìm các số a, b, c biết
a) (2a - 7)^2 + (b + 3)^4 + (5c + 6)^2 < 0
b)(a - 7)^2 + (3b + 2)^2 + (4c - 5)^6 < 0
c)(12a - 5)^2 - (8b + 1)^4 + (c+ 19)^6 < 0
tìm x biết : a)x(x-3)-x^2+5=0 b)x^2-6x=0 c)2x^3+5x^2-012x=0
a: Ta có: \(x\left(x-3\right)-x^2+5=0\)
\(\Leftrightarrow-3x+5=0\)
hay \(x=\dfrac{5}{3}\)
b: Ta có: \(x^2-6x=0\)
\(\Leftrightarrow x\left(x-6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)
Tìm x, biết:
a) 8 x 3 - 50x = 0;
b) 2(x + 3)- x 2 - 3x = 0;
c) 6 x 2 - 15x - (2x - 5)(2x + 5) = 0.
hàm số: y=f(x)=ax^2+bx+c
a) xác định các hệ số a;b;c biết: f(0)=5; f(1)=0; f(5)=0
b) trong 2 điểm P(-1;3) và Q(1/2; 9/4) điểm nào thuộc đồ thị hàm số
c) tìm x biết: y=5
Bài 2: Tìm x, biết: a) (x + 2)^2 – 2(x + 2)(x – 5) = 0. b) 2x^2 + 3x – 5 = 0. c) x + 2 ^2 x 2 + 2x^3 = 0. d) (3x-1)^2-4(x+5)^2=0
a: \(\Leftrightarrow\left(x+2\right)\left(x+2-2x+10\right)=0\)
\(\Leftrightarrow x\in\left\{-2;12\right\}\)
. Tìm x, biết:
a) 4x2 – 9 = 0
b) (x + 5)2 – (x – 1)2= 0
c) x2 – 6x – 7 = 0
d) (x + 1)2 – (2x - 1)2 = 0
a)4x2-9=0
⇔ (2x-3)(2x+3)=0
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{3}{2}\\x=-\dfrac{3}{2}\end{matrix}\right.\)
b)(x+5)2-(x-1)2=0
⇔ (x+5-x+1)(x+5+x-1)=0
⇔ 12(x+2)=0
⇔ x=-2
c)x2-6x-7=0
⇔ x2-7x+x-7=0
⇔ x(x-7)+(x-7)=0
⇔ (x-7)(x+1)=0
\(\Leftrightarrow\left\{{}\begin{matrix}x=7\\x=-1\end{matrix}\right.\)
d)(x+1)2-(2x-1)2=0
⇔ (x+1-2x+1)(x+1+2x-1)=0
⇔3x(2-x)=0
\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
a, 4x2 - 9 = 0
<=> 4x2 = 9
<=> x2 = \(\dfrac{9}{4}\) => x = \(\sqrt{\dfrac{9}{4}}\)
b, (x + 5 )2 - ( x - 1 )2 = 0
<=> ( x+5-x+1 )(x+5+x-1) = 0
<=> 6(2x+4) = 0
<=> 12x+24=0
<=> 12x = -24
<=> x = -2
c, x2-6x-7=0
<=> x2+x-7x-7=0
<=> x(x+1)-7(x+1)=0
<=> (x-7)(x+1)=0
=> x+7=0 hoặc x+1=0
+ x-7=0 => x=7
+ x+1=0 => x=-1
d, \(\left(x+1\right)^2-\left(2x-1\right)^2=0\)
<=> \(\left(x+1-2x+1\right)\left(x+1+2x-1\right)=0\)
<=> (-x+2).3x=0
=> x=0 hoặc (-x+2).3=0
+ (-x+2).3=0 => -3x+6=0 => x=-2
b) (x +5)2 -(x -1)2=0
<=> [(x +5) -(x -1)][(x +5) +(x -1)]=0
<=> (x +5 -x +1)(x +5 +x -1)=0
<=> 6(2x+4)=0 <=>12(x +2)=0
=> x +2=0=> x=-2
vậy x= -2
c) x2 -6x -7=0
<=> x2 -7x +x -7=0
<=> (x2 +x)( -7x -7)=0
<=> x(x +1).-7(x +1)=0
<=> (x +1)(x -7)=0
<=> \(\left\{{}\begin{matrix}x+1=0\\x-7=0\end{matrix}\right.< =>\left\{{}\begin{matrix}x=-1\\x=7\end{matrix}\right.\)
Vậy S={-1; 7}
d) (x +1)2 -(2x -1)2=0
<=> [(x -1)-(2x -1)][(x -1)+(2x -1)]=0
<=> (x -1 -2x +1)(x -1 +2x -1)=0
<=> (x -2x)(3x -2)<=> -x(3x -2)=0
<=> \(\left\{{}\begin{matrix}-x=0\\3x-2=0\end{matrix}\right.< =>\left\{{}\begin{matrix}x=0\\x=\dfrac{2}{3}\end{matrix}\right.\)
Vậy S={0; \(\dfrac{2}{3}\)}