Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần sỹ đạt
Xem chi tiết
Minh Triều
6 tháng 9 2015 lúc 6:49

\(B=\left(\frac{1}{1-\sqrt{a}}-\frac{1}{1+\sqrt{a}}\right)\left(\frac{1}{\sqrt{a}}+1\right)\)

\(=\left(\frac{1+\sqrt{a}}{1-a}-\frac{1-\sqrt{a}}{1-a}\right)\left(\frac{\sqrt{a}}{a}+\frac{a}{a}\right)\)

\(=\frac{1+\sqrt{a}-1+\sqrt{a}}{1-a}.\frac{\sqrt{a}+a}{a}\)

\(=\frac{2\sqrt{a}}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}.\frac{\sqrt{a}.\left(1+\sqrt{a}\right)}{a}\)

\(=\frac{2}{1-\sqrt{a}}\)

Trần sỹ đạt
Xem chi tiết
Ngọc Vĩ
19 tháng 9 2015 lúc 21:46

\(=\frac{1+a}{2\sqrt{a}-a}.\frac{2\sqrt{a}-a}{-\left(1+\sqrt{a}\right)}=\frac{-\left(1+a\right)}{1+\sqrt{a}}\)

quang
Xem chi tiết
Akai Haruma
15 tháng 4 2023 lúc 22:00

Đoạn $x\sqrt{x}-a$ là sao vậy bạn? Có nhầm lẫn gì không?

Nguyễn Lê Phước Thịnh
15 tháng 4 2023 lúc 23:19

\(=\left(\sqrt{x}+1-\dfrac{x+\sqrt{x}+1}{\sqrt{x}+1}\right):\dfrac{x-\sqrt{x}+1}{\sqrt{x}+1}\)

\(=\dfrac{x+2\sqrt{x}+1-x-\sqrt{x}-1}{\sqrt{x}+1}\cdot\dfrac{\sqrt{x}+1}{x-\sqrt{x}+1}\)

\(=\dfrac{\sqrt{x}}{x-\sqrt{x}+1}\)

Như Ý
Xem chi tiết
Ariels spring fashion
Xem chi tiết
Tô Hoài An
1 tháng 11 2020 lúc 20:21

\(M=\left(\frac{2+\sqrt{a}}{\left(\sqrt{a}+1\right)^2}-\frac{\sqrt{a}-2}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\right)\frac{a\left(\sqrt{a}+1\right)-\left(\sqrt{a}+1\right)}{a}\)

\(=\frac{\left(2+\sqrt{a}\right)\left(\sqrt{a}-1\right)-\left(\sqrt{a}-2\right)\left(\sqrt{a}+1\right)}{\left(\sqrt{a}+1\right)^2\left(\sqrt{a}-1\right)}\cdot\frac{\left(\sqrt{a}-1\right)\left(a-1\right)}{a}\)

\(=\frac{2\sqrt{a}-2+a-\sqrt{a}-a-\sqrt{a}+2\sqrt{a}+2}{\left(\sqrt{a}+1\right)\left(a-1\right)}\cdot\frac{\left(\sqrt{a}-1\right)\left(a-1\right)}{a}\)

\(=\frac{2\sqrt{a}}{\left(\sqrt{a}+1\right)\left(a-1\right)}\cdot\frac{\left(\sqrt{a}-1\right)\left(a-1\right)}{a}\)

\(=\frac{2\sqrt{a}\left(\sqrt{a-1}\right)}{a\left(\sqrt{a}+1\right)}=\frac{2\left(\sqrt{a}-1\right)}{\sqrt{a}\left(\sqrt{a}+1\right)}\)

Khách vãng lai đã xóa
Tô Hoài An
1 tháng 11 2020 lúc 20:29

\(N=\left(\frac{\left(\sqrt{a}+1\right)^2-\left(\sqrt{a}-1\right)^2}{a-1}+4\sqrt{a}\right)\cdot\frac{a-1}{\sqrt{a}}\)

\(=\left(\frac{a+1+2\sqrt{a}-a-1+2\sqrt{a}}{a-1}+4\sqrt{a}\right)\cdot\frac{a-1}{\sqrt{a}}\)

\(=\left(\frac{4\sqrt{a}}{a-1}+4\sqrt{a}\right)\cdot\frac{a-1}{\sqrt{a}}=4\sqrt{a}\left(\frac{1}{a-1}+1\right)\cdot\frac{a-1}{\sqrt{a}}=4\cdot\left(a-1\right)\left(\frac{1}{a-1}+1\right)\)

\(=4\cdot\left(a-1\right)\)

vừa tham khảo cách làm vừa check lại hộ tớ với nhé :33 

Khách vãng lai đã xóa
Nguyễn Khánh Ly
1 tháng 11 2020 lúc 20:35
\(Với\)\(a>0\);\(a\ne1\)ta có:

\(M=(\frac{2+\sqrt{a}}{a+2\sqrt{a}+1}-\frac{\sqrt{a}-2}{a-1}).(\frac{a\sqrt{a}+a-\sqrt{a}-1}{\sqrt{a}})\)

\(=[\frac{\sqrt{a}+2}{(\sqrt{a}+1)^2}-\frac{\sqrt{a}-2}{(\sqrt{a}+1)(\sqrt{a}-1)}].\frac{(a\sqrt{a}-\sqrt{a})+(\sqrt{a}-1)}{\sqrt{a}}\)

\(=[\frac{(\sqrt{a}-2).(\sqrt{a}-1)}{(\sqrt{a}+1)^2.(\sqrt{a}-1)}-\frac{(\sqrt{a}-2).(\sqrt{a}+1)}{(\sqrt{a}+1)^2.(\sqrt{a}-1)}].\frac{\sqrt{a}(a-1)+(a-1)}{\sqrt{a}}\)

\(=[\frac{a+\sqrt{a}-2}{(\sqrt{a}+1)(a-1)}-\frac{a-\sqrt{a}-2}{(\sqrt{a}+1)(a-1)}].\frac{(a-1).(\sqrt{a}+1)}{\sqrt{a}}\)

\(=\frac{a+\sqrt{a}-2-a+\sqrt{a}+2}{(a-1).(\sqrt{a}+1)}.\frac{(a-1)(\sqrt{a}+1)}{\sqrt{a}}\)

\(=\frac{2\sqrt{a}}{(a-1)(\sqrt{a}+1)}.\frac{(a-1)(\sqrt{a}+1)}{\sqrt{a}}\)

\(=2\)

Vậy \(M=2\)

\(Với\)\(a>0;a\ne1:\)

\(N=(\frac{\sqrt{a}+1}{\sqrt{a}-1}-\frac{\sqrt{a}-1}{\sqrt{a}+1}+4\sqrt{a}).(\sqrt{a}-\frac{1}{\sqrt{a}})\)

\(=[\frac{(\sqrt{a}+1).(\sqrt{a}+1)}{\left(\sqrt{a}-1\right).(\sqrt{a}+1)}-\frac{(\sqrt{a}-1).(\sqrt{a}-1)}{(\sqrt{a}-1).(\sqrt{a}+1)}+\frac{4\sqrt{a}(a-1)}{(\sqrt{a}-1).(\sqrt{a}+1)}].\frac{a-1}{\sqrt{a}}\)

\(=\frac{(\sqrt{a}+1)^2-(\sqrt{a}-1)^2+(4a\sqrt{a}-4\sqrt{a})}{(\sqrt{a}-1).(\sqrt{a}+1)}.\frac{a-1}{\sqrt{a}}\)

\(=\frac{a+2\sqrt{a}+1-a+2\sqrt{a}-1+4a\sqrt{a}-4\sqrt{a}}{a-1}.\frac{a-1}{\sqrt{a}}\)

\(=\frac{4a\sqrt{a}}{a-1}.\frac{a-1}{\sqrt{a}}\)\(=4a\)

Vậy \(N=4a\)

Khách vãng lai đã xóa
★๖ۣۜGấυ✟๖ۣۜXáм★
Xem chi tiết
Minh Nguyen
29 tháng 3 2020 lúc 12:41

\(ĐKXĐ:a\ge0\)

\(A=\left(\frac{2\sqrt{a}}{a\sqrt{a}+a+\sqrt{a}+1}+\frac{1}{\sqrt{a}+1}\right):\left(1+\frac{\sqrt{a}}{a+1}\right)\)

\(\Leftrightarrow A=\left(\frac{2\sqrt{a}}{\left(a+1\right)\left(\sqrt{a}+1\right)}+\frac{1}{\sqrt{a}+1}\right):\frac{a+\sqrt{a}+1}{a+1}\)

\(\Leftrightarrow A=\frac{2\sqrt{a}+a+1}{\left(a+1\right)\left(\sqrt{a}+1\right)}\cdot\frac{a+1}{a+\sqrt{a}+1}\)

\(\Leftrightarrow A=\frac{\left(\sqrt{a}+1\right)^2}{\left(\sqrt{a}+1\right)\left(a+\sqrt{a}+1\right)}\)

\(\Leftrightarrow A=\frac{\sqrt{a}+1}{a+\sqrt{a}+1}\)

Khách vãng lai đã xóa
shoppe pi pi pi pi
Xem chi tiết
Phạm Thị Thùy Linh
9 tháng 7 2019 lúc 21:45

\(A=\)\(\frac{\sqrt{a}\left(1-a\right)^2}{1+a}:\left[\left(\frac{1-\sqrt{a}^3}{1-\sqrt{a}}+\sqrt{a}\right)\left(\frac{1+\sqrt{a}^3}{1+\sqrt{a}}-\sqrt{a}\right)\right]\)

\(=\frac{\sqrt{a}\left(1-a\right)^2}{1+a}\)\(:\)\(\left[\left(1+\sqrt{a}+a+\sqrt{a}\right)\left(1-\sqrt{a}+a-\sqrt{a}\right)\right]\)

\(=\frac{\sqrt{a}\left(1-a\right)^2}{1+a}:\)\(\left(1+a+2\sqrt{a}\right)\left(1+a-2\sqrt{a}\right)\)

\(=\frac{\sqrt{a}\left(1-a\right)^2}{\left(1+a\right)\left[\left(1+a\right)^2-\left(2\sqrt{a}\right)^2\right]}\)\(=\frac{\sqrt{a}\left(1-a\right)^2}{\left(a+1\right)\left(1+2a+a^2-4a\right)}\)

\(=\frac{\sqrt{a}\left(1-a\right)^2}{\left(a+1\right)\left(1-a\right)^2}=\frac{\sqrt{q}}{a+1}\)

Giang Nguyễn
Xem chi tiết
alibaba nguyễn
12 tháng 12 2016 lúc 15:10

Điều kiện: \(\hept{\begin{cases}a>0\\\sqrt{a}-1\ne0\\\sqrt{a}-2\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}a>0\\a\ne1\\a\ne4\end{cases}}\)

Ta có:

\(1P=\left(\frac{1}{\sqrt{a}-1}-\frac{1}{\sqrt{a}}\right):\left(\frac{\sqrt{a}+1}{\sqrt{a}-2}-\frac{\sqrt{a}+2}{\sqrt{a}-1}\right)\)

\(=\frac{\sqrt{a}-\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\frac{a-1-a+2}{\left(\sqrt{a}-1\right)\left(\sqrt{a}-2\right)}\)

\(=\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}.\left(\sqrt{a}-1\right)\left(\sqrt{a}-2\right)\)

\(=\frac{\sqrt{a}-2}{\sqrt{a}}\)

hưngchibi
29 tháng 6 2018 lúc 14:51

không hiểu nhan

Arceus Official
Xem chi tiết