a+b+c=0 va a^2+b^2+c^2=14.Khi đó giá trị của 1+a^4+b^4+c^4 la
Cho các số a,b,c đồng thời thỏa mãn các điều kiện a+b+c=0 và \(a^2+b^2+c^2=14\) Khi đó giá trị của biểu thức \(1+a^4+b^4+c^4\)
Cho a + b + c = 0 va a^2 + b^2 + c^2 = 1
Tính giá trị của biểu thức A = a^4 + b^4 + c^4
(a2+b2+c2)2=196(a2+b2+c2)2=196
a4+b4+c4+2(a2b2+b2c2+c2a2)=196(1)a4+b4+c4+2(a2b2+b2c2+c2a2)=196(1)
ta lại có a+b+c)^2=0a2+b2+c2=−2(ab+bc+ca)=14a2+b2+c2=−2(ab+bc+ca)=14(ab+bc+ca)2=49(ab+bc+ca)2=49
a2b2+b2c2+c2a2+2abc(a+b+c)=49a2b2+b2c2+c2a2+2abc(a+b+c)=49
a2b2+b2c2+c2a2=49(2)a2b2+b2c2+c2a2=49(2)
Từ (1);(2)a4+b4+c4=196−49.2=98
bạn ghi tùm lum ko hiểu j hết ghi lại được ko
Chia thành nhiều bước để tinh nha ban
Bước 1:a+b+c=0
(a+b+c)^2=a^2+b^2+c^2+2ab+2bc+2ca=0
1+2(ab+bc+ca)=0
2(ab+bc+ca)=-1
ab+bc+ca=-1/2
Bước 2 :(ab+bc+ca)^2=1/4
=a^2b^2+b^2c^2+c^2a^2+2ab^2c+2abc^2+2a^2bc=1/4
=a^2b^2+b^2c^2+c^2+a^2+2abc(a+b+c)=1/4
=a^2b^2+b^2c^2+c^2a^2+2abc.0
=a^2b^2+b^2c^2+c^2a^2
=>(ab+bc+ca)^2=a^2b^2+b^2c^2+c^2a^2=1/4
Bước 3:(a^2+b^2+c^2)^2=a^4+b^4+c^4+2a^2b^2+2b^2c^2+2c^2a^2
=a^4+b^4+c^4+2(a^2b^2+b62c^2+c^2a^2)=1
=a^4+b^4+c^4+2.1/4=1
=>a^4+b^4+c^4+1/2=1
=>a^4+b^4+c^4=1/2
tính giá trị biểu thức a4 +b4+c4, biết rằng a+b+c=0 va a2+b2+c2=14
http://olm.vn/hoi-dap/question/624161.html tối qua mình có giải cho 1 bạn bạn vào đây xem nha
T I C K cho mình luôn nha mỉnh cảm ơn
1. Cho a+b+c=0 và a2+b2+c2=14
Tính giá trị của biểu thức A=a4+b4+c4
Ta có a + b + c = 0
=> a + b = -c
=> (a + b)2 = (-c)2
=> a2 + b2 + 2ab = c2
=> a2 + b2 - c2 = -2ab
=> (a2 + b2 - c2)2 = (-2ab)2
=> a4 + b4 + c4 + 2a2b2 - 2a2c2 - 2b2c2 = 4a2b2
=> a4 + b4 + c4 = 2a2b2 + 2b2c2 + 2a2c2
Khi đó a2 + b2 + c2 = 14
<=> (a2 + b2 + c2)2 = 142
=> a4 + b4 + c4 + 2a2b2 + 2b2c2 + 2a2c2 = 196
=> a4 + b4 + c4 + a4 + b4 + c4 = 196 (Vì a4 + b4 + c4 = 2a2b2 + 2b2c2 + 2a2c2)
=> 2(a4 + b4 + c4) = 196
=> a4 + b4 + c4 = 98
Cho \(a+b+c=0\) và \(a^2+b^2+c^2=1\). Khi đó giá trị của biểu thức \(A=a^4+b^4+c^4\) là
Ta có a + b+ c = 0 \(\Rightarrow\left(a+b+c\right)^2=0\)
\(\Rightarrow a^2+b^2+c^2+2ab+2ac+2bc=0\)
\(\Rightarrow1+2\left(ab+ac+bc\right)=0\)( vì \(a^2+b^2+c^2=1\))
\(\Rightarrow ab+bc+ac=-\frac{1}{2}\)
\(\Rightarrow\left(ab+bc+ca\right)^2=\frac{1}{4}\)
\(\Rightarrow a^2b^2+a^2c^2+b^2c^2+2a^2bc+2ab^2c+2abc^2=\frac{1}{4}\)
Tới đây bạn phân tích nốt ra nhé :v
\(a^2b^2+a^2c^2+b^2c^2+2abc\left(a+b+c\right)=\frac{1}{4}\)
\(\Rightarrow a^2b^2+a^2c^2+b^2c^2=\frac{1}{4}\left(a+b+c=0\right)\)(*)
Mặt khác : \(a^2+b^2+c^2=\left(a^2+b^2+c^2\right)^2=1\)
\(\Rightarrow a^4+b^4+c^4+2a^2b^2+2a^2c+2b^2c^2=1\)
\(\Rightarrow a^4+b^4+c^4+2\cdot\frac{1}{4}=1\)(theo *)
\(\Rightarrow a^4+b^4+c^4+\frac{1}{2}=1\Rightarrow a^4+b^4+c^4=\frac{1}{2}\)
a) Cho a+b+c = 0 và a2+b2+c2 = 14. Tính giá trị của A =a4+b4+c4
b) Cho x+y+z = 0 và xy+yz+zx = 0. Tính giá trị B = (x-1)2007 + y2008 + (z+1)2009
\(a,\)\(a+b+c=0\Rightarrow\left(a+b+c\right)^2=0\)\(\Leftrightarrow14+2\left(ab+bc+ac\right)=0\)\(\Rightarrow\left(ab+bc+ac\right)^2=49\)\(\Leftrightarrow a^2b^2+b^2c^2+a^2c^2+2abc\left(a+b+c\right)=49\)\(\Leftrightarrow a^2b^2+b^2c^2+a^2c^2=49\)
Ta có: \(a^2+b^2+c^2=14\Rightarrow\left(a^2+b^2+c^2\right)=196\)\(\Leftrightarrow a^{^{ }4}+b^4+c^4+2\left(a^2b^2+b^2c^2+a^2c^2\right)=196\)\(\Leftrightarrow\)\(a^4+b^4+c^4=98\)
Cho a + b + c = 0 và a2 + b2 + c2 = 1. Khi đó giá trị của biểu thức A = a4 + b4 + c4 là ...
CTV zo giúp vs
TA có \(\left(a+b+c\right)^2=0\Rightarrow ab+bc+ca=-\frac{1}{2}\Rightarrow a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)=\frac{1}{4}\)
=> \(a^2b^2+b^2c^2+c^2a^2=\frac{1}{4}\)
Mà \(\left(a^2+b^2+c^2\right)^2=1\Rightarrow a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)=1\)
=> \(a^4+b^4+c^4=\frac{1}{2}\)
^_^
Ta có: a+b+c=0 <=> (a+b+c)2=0 <=> a2+b2+c2+ 2( ab+ac+bc)=0 <=> 2(ab+ac+bc)= -1 ( vì a2+b2+c2=1) <=> ab+ac+bc= -1/2
=> (ab+ac+bc)2= 1/4 <=> a2b2+a2c2+b2c2+2abc(a+b+c)= 1/4 <=> 2(a2b2+a2c2+b2c2)= 1/2 ( vì a+b+c=0) (*)
Lại có: a2+b2+c2=1 <=> (a2+b2+c2)2=1 <=> a4+b4+c4+2(a2b2+a2c2+b2c2)=1 <=> a4+b4+c4= 1/2 ( vì (*))
Vậy,...
cho a+b+c=0 và \(^{a^2+b^2+c^2=14}\) . Tính giá trị của \(a^4+b^4+c^4\)
a2 + b2 + c2=14
hay(a + b + c)2 = 14
a4 + b4 + c4 =(a2 + b2 + c2).(a2 + b2 + c2)=(a+b+c)2 . (a+b+c)2 =14.14=196
k mk nha bạn kb nữa
1. Cho 3 số a,b,c thỏa mãn a+b+c=11 và a2 +b2 +c2=87. Tìm giá trị của ab +bc+ca.
2.Cho a+b+c=0.Khi đó giá trị của biểu thức a3 +b3 +a2c +b2c- abc bằng bao nhiêu
3.Cho x+y=9 và x.y +4. Tính giá trị của x4+3x3y+3xy3 +y4.
1/ \(a+b+c=11\)
\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=121\)
\(\Leftrightarrow ab+bc+ca=\frac{121-\left(a^2+b^2+c^2\right)}{2}=\frac{121-87}{2}=17\)
2/ \(a^3+b^3+a^2c+b^2c-abc\)
\(=\left(a+b\right)\left(a^2-ab+b^2\right)+c\left(a^2-ab+b^2\right)\)
\(=\left(a^2-ab+b^2\right)\left(a+b+c\right)=0\)
3/ \(x^4+3x^3y+3xy^3+y^4\)
\(=\left(\left(x+y\right)^2-2xy\right)^2-2x^2y^2+3xy\left(\left(x+y\right)^2-2xy\right)\)
\(=\left(9^2-2.4\right)^2-2.4^2+3.4.\left(9^2-2.4\right)=6173\)
bạn alibaba nguyễn có thể làm lại giúp mình được không ?