Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Lan Phương
Xem chi tiết
Lý Thanh Khoa
Xem chi tiết
Trang Pham
3 tháng 11 2015 lúc 15:21

vì x+y=4 nền (x+y)^2=4^2                                                                                                                                                                                            =x^2+ 2xy+y^2=16        ma  xy=5 nên 2xy=10  ta có x^2+y^2+10=16 ; x^2+y^2= 16-10                                                                                                                                                                                     x^2+y^2=6                                     kết quả mik là z đó nhưng k biết có đúng k bn ak

Lý Thanh Khoa
Xem chi tiết
Doan Quynh
Xem chi tiết
Bảo Ngô Hoàng
22 tháng 11 2015 lúc 19:29

Câu 10: -3;0;3
Câu 8: 2 (2;-2)



 

Trần Hồ Hoàng Vũ
8 tháng 7 2016 lúc 14:27

c5: -2

c6: \(\frac{9}{2}\)

c10: -3;0;3

Doan Quynh
Xem chi tiết
Gloria Filbert
Xem chi tiết
hong pham
Xem chi tiết
Hoàng Phúc
28 tháng 11 2015 lúc 21:22

x^2-25x^4=0

=>x^2-25x^2.x^2=0

=>x^2.(1-25x^2)=0

=>x=0 hoặc x^2=1/25

=>x thuộc {-0,2;0;0,2}

2) 2 giá trị

3)x^2+7x+12=0

=>x^2+3x+4x+3.4=0

=>x(x+3)+4(x+3)=0

=>(x+4)(x+3)=0

=>x=-3;x=-4

nhớ ****

hong pham
Xem chi tiết
Hoàng Phúc
28 tháng 11 2015 lúc 21:36

1)x thuộc {-0,2;0;0,2}

2)2 giá trị

3)x^2+3x+4x+4.3=0

=>x(x+3)+4(x+3)=0

=>(x+3)(x+4)=0

=>x=-4;x=-3

Đỗ Lê Tú Linh
28 tháng 11 2015 lúc 21:39

1)x2-25x4=0

x2(1-25x2)=0

=>x^2=0              hoặc                  1-25x^2=0

x=0                                              25x^2=-1-0=1

                                                    x^2=1/25=(1/5)^2=(1/-5)^2

Vậy S={-1/5;0;1/5}

2)Có 3 giá trị là 0;1;2

3)có 2 giá trị là -3;-4

Nguyễn Thúy Diễm
Xem chi tiết
Nguyễn Khang
Xem chi tiết
Nguyễn Việt Lâm
10 tháng 1 2021 lúc 21:47

\(x^3+y^3+3xy\left(x+y\right)+\dfrac{1}{27}-3xy\left(x+y\right)-xy=0\)

\(\Leftrightarrow\left(x+y\right)^3+\dfrac{1}{27}-3xy\left(x+y+\dfrac{1}{3}\right)=0\)

\(\Leftrightarrow\left(x+y+\dfrac{1}{3}\right)\left[\left(x+y\right)^2-\dfrac{1}{3}\left(x+y\right)+\dfrac{1}{9}\right]-3xy\left(x+y+\dfrac{1}{3}\right)=0\)

\(\Leftrightarrow x^2+y^2-xy-\dfrac{1}{3}\left(x+y\right)+\dfrac{1}{9}=0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(x-\dfrac{1}{3}\right)^2+\left(y-\dfrac{1}{3}\right)^2=0\)

\(\Leftrightarrow x=y=\dfrac{1}{3}\Rightarrow P=...\)