Chứng minh rằng:
\(A=n^3\left(n+7\right)^2-36n\) chia hết cho 5040
Chứng minh rằng \(A=n^3\left(n^2-7\right)^2-36n\) chia hết cho 5040 với mọi số tự nhiên n
Xét \(5040=2^4.3^2.5.7\)
Phân tích:
\(A=n\left[n^2\left(n^2-7\right)^2-36\right]=n\left[\left(n^2-7n\right)^2-6^2\right]\)
\(=n\left(n^3-7n-6\right)\left(n^3-7n+6\right)\)
Ta có:
\(n^3-7n-6=\left(n+1\right)\left(n+2\right)\left(n-3\right)\)
\(n^3-7n+6=\left(n-1\right)\left(n-2\right)\left(n+3\right)\)
Do đó \(A=\left(n-3\right)\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\left(n+3\right)\)
Đây là tích 7 số nguyên liên tiếp. Trong 7 số nguyên liên tiếp:
- Tồn tại 1 bội số của 5 (nên A chia hết cho 5)
- Tồn tại 1 bội số của 7 (nên A chia hết cho 7)
- Tồn tại 2 bội số của 3 (nên A chia hết cho 9)
- Tồn tại 3 bội số của 2, trong đó có 1 bội số của 4 (nên A chia hết cho 16)
A chia hết cho các số 5, 7, 9, 16 đôi một nguyên tố cùng nhau nên A chia hết cho 5.7.9.16 = 5040
Chứng minh rằng:
\(A=n^3\left(n+7\right)^2-36n\) chia hết cho 5040
a) Phân tích đa thức sau thành nhân tử: \(x^3\left(x^2-7\right)^2-36x\)
b)Cho biểu thức: \(A=n^3\cdot\left(n^2-7\right)^2-36n\)
Chứng minh rằng A chia hết cho 5040 với mọi số tự nhiên n
b) Phân tích ra thừa số : 5040 = 24 . 32 . 5 . 7
Phân tích : A = n . [ n2 . ( n2 - 7 )2 - 36 ] = n . [ ( n3 - 7n )2 - 62 ]
= n . ( n3 - 7n - 6 ) . ( n3 - 7n + 6 )
Ta lại có : n3 - 7n - 6 = ( n + 1 ) ( n + 2 ) ( n - 3 )
n3 - 7n + 6 = ( n - 1 ) ( n - 2 ) ( n + 3 )
Do đó : A = ( n - 3 ) ( n - 2 ) ( n - 1 ) n ( n + 1 ) ( n + 2 ) ( n + 3 )
Ta thấy A là tích của 7 số nguyên liên tiếp nên :
- tồn tại 1 bội số của 5 ( nên A chia hết cho 5 )
- tồn tại 1 bội số của 7 ( nên A chia hết cho 7 )
- tồn tại 2 bội số của 3 ( nên A chia hết cho 9 )
- tồn tại 3 bội số của 2, trong đó có 1 bội số của 4 ( nên A chia hết cho 16 )
A chia hết cho các số 5,7,9,16 đôi một nguyên tố cùng nhau nên A chia hết cho 5.7.9.16 = 5040
Chứng minh rằng: A = n3(n2 -7)2 – 36n chia hết cho 5040 với mọi số tự nhiên n
Ta có
A =n[n2(n2 -7)2 -36]= n[(n3 -7n2)-36]
= n(n3 -7n2 -6)( n3 -7n2 +6)
Mà n3 -7n2 -6 = (n+1) (n+2) (n-3)
n3 -7n2 +6 = (n-1)(n-2)(n+3)
Do đó:
A= (n-3)(n-2)(n-1)(n+1)(n+2)(n+3)
Đây là tích của 7 số nguyên liên tiếp.Trong 7 số nguyên liên tiếp
+Tồn tại một bội của 5 ⇒ A chia hết cho 5
+Tồn tại một bội của 7 ⇒ A chia hết cho 7
+Tồn tại hai bội của 3 ⇒ A chia hết cho 9
+Tồn tại ba bội số của 2,trong đó có một bội số của 4 ⇒ A chia hết cho 16
A chia hết cho các số 5,7,9,16 đôi một nguyên tố cùng nhau nên A chia hết cho
5.7.9.16 =5040.
+ Qua ví dụ 1 rút ra cách làm như sau:
Gọi A(n) là một biểu thức phụ thuộc vào n (n ∈ N hoặc n ∈ Z).
n^3-n^2+2n+7=(n^3+n)-(n^2+1)+n+8=n(n^2+1)-(n^2+1)+n+8. Để n(n^2+1)-(n^2+1)+n+8 chia hết cho n^2+1=>8+n chia hết cho n^2+1
Vậy n=2k hoặc 2k+1
Xét TH:n=2k
=>8+n=8+2k(1)
*n^2+1=(2k)^2+1=4k^2+1(2)
Từ (1) và (2) ta có:8+2k chia hết cho 2 mà 4k^2+1 không chia hết cho 2 nên n ko bằng 2k
Xét TH:n=2k+1=>8+n=8+2k+1(3)
*n^2+1=(2k+1)^2+1
n^2+1=(4k^2+1)+(2k+1)(4)
Từ 3 và 4 : muốn 8+n chia hết n^2 +1 thì 8 chia hết cho 4k^2+1
=>4k^2+1 thuộc{-1;+1;-2;+2;-4;+4;-8;8}
các bạn làm từng TH thì sẽ ra k=0 và n=1 và các bạn thế vào đề bài lai để kiểm tra kết quả
Chứng minh rằng: A = n3(n2 -7)2 – 36n chia hết cho 5040 với mọi số tự nhiên n.
Nguồn bài viết: https://timgiasuhanoi.com/dang-bai-tap-chung-minh-quan-he-chia-het-so-hoc-6/
Vì đây là 7 số nguyên liên tiếp
nên A chia hết cho 7!
=>A chia hết cho 5040
cmr A=n3(n2-7)2-36n chia hết cho 5040
Có 5040=16.9.5.7
A= n3(n2-7)2-36n
= n.[ n2(n2-7)2-36]
= n.[(n3-7n)2-36]
= n.(n3-7n-6)(n3-7n+6)
Có :
\(\cdot\) n3-7n-6
= n3-9n+2n-6
= n(n2-9)+2(n-3)
= n(n+3)(n-3)+2(n-3)
= (n-3)(n+1)(n+2)
\(\cdot\) n3-7n+6
= n3-9n+2n+6
= n(n-3)(n+3)+2(n+3)
= (n+3)(n-1)(n-2)
\(\Rightarrow A=\left(n-3\right)\left(n-1\right)\left(n-2\right)n\left(n+1\right)\left(n+3\right)\left(n+2\right)\)
Đây là tích 7 số nguyên liên tiếp , trong 7 số nguyên liên tiếp đó có
\(-\) Tồn tại 1 bội số của 5 \(\Rightarrow A⋮5\)
\(-\) Tồn tại 1 bội số của 7 \(\Rightarrow A⋮7\)
\(-\) Tồn tại 2 bội số của 3 \(\Rightarrow A⋮9\)
\(-\) Tồn tại 3 bội số của 2 , trong đó có 1 bội số của 4 \(\Rightarrow A⋮16\)
\(\Rightarrow A⋮9.16.5.7\)
\(\Rightarrow A⋮5040\left(đpcm\right)\)
A = n3(n2 -7)2 – 36n chia hết cho 5040 với mọi số tự nhiên n.
Hướng phân tích:
+ Trước hết cho hoc sinh nhận xét về các hạng tử của biểu thức A
+ Từ đó phân tích A thành nhân tử
Giải: Ta có
A =n[n2(n2 -7)2 -36]= n[(n3 -7n2)-36]
= n(n3 -7n2 -6)( n3 -7n2 +6)
Mà n3 -7n2 -6 = (n+1) (n+2) (n-3)
n3 -7n2 +6 = (n-1)(n-2)(n+3)
Do đó:
A= (n-3)(n-2)(n-1)(n+1)(n+2)(n+3)
Đây là tích của 7 số nguyên liên tiếp.Trong 7 số nguyên liên tiếp
+Tồn tại một bội của 5 ⇒ A chia hết cho 5
+Tồn tại một bội của 7 ⇒ A chia hết cho 7
+Tồn tại hai bội của 3 ⇒ A chia hết cho 9
+Tồn tại ba bội số của 2,trong đó có một bội số của 4 ⇒ A chia hết cho 16
A chia hết cho các số 5,7,9,16 đôi một nguyên tố cùng nhau nên A chia hết cho
5.7.9.16 =5040.(đpcm)
Chứng minh rằng: \(A=\left[n^3\left(n^2-7\right)^2-36n\right]⋮7\) với \(\forall n\inℤ\)
là tích 7 số nguyên liên tiếp nên A luôn chia hết cho 7
CMR: A= n3(n2-7)2 - 36n chia hết cho 5040 với mọi n
Ta có: \(5040=16.9.5.7\)
\(A=\text{ }n^3\left(n^2-7\right)^2-36n=\left(n-3\right)\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\left(n+2\right)\)
Chứng minh chia hết cho 24
Đây là 7 số nguyên liên tiếp nên sẽ có ít nhất 3 số chẵn liên tiếp mà trong 3 số chẵn liên tiếp sẽ có 2 số chia hết cho 2 và 1 số chia hết cho 4 nên A chia hết cho 16
Chứng minh chia hết cho 9
Cứ 3 số liên tiếp thì chia hết cho 3 mà trong này ta có 2 bộ số như vậy nên chia hết cho 9
Chứng minh chia hết cho 5
Trong 5 số liên tiếp có ít nhất 1 số chia hết cho 5 nên A chia hết cho 5
Chứng minh chia hết cho 7
Trong 7 số liên tiếp có ít nhất 1 số chia hết cho 7 nên A chia hết cho 7
Vì 16,9,5,7 là các số nguyên tố cũng nhau từng đôi 1 nên A chia hết cho 5040
A = n3(n2 -7)2 – 36n chia hết cho 5040 với mọi số tự nhiên n.
Hướng phân tích:
+ Trước hết cho hoc sinh nhận xét về các hạng tử của biểu thức A
+ Từ đó phân tích A thành nhân tử
Giải: Ta có
A =n[n2(n2 -7)2 -36]= n[(n3 -7n2)-36]
= n(n3 -7n2 -6)( n3 -7n2 +6)
Mà n3 -7n2 -6 = (n+1) (n+2) (n-3)
n3 -7n2 +6 = (n-1)(n-2)(n+3)
Do đó:
A= (n-3)(n-2)(n-1)(n+1)(n+2)(n+3)
Đây là tích của 7 số nguyên liên tiếp.Trong 7 số nguyên liên tiếp
+Tồn tại một bội của 5 ⇒ A chia hết cho 5
+Tồn tại một bội của 7 ⇒ A chia hết cho 7
+Tồn tại hai bội của 3 ⇒ A chia hết cho 9
+Tồn tại ba bội số của 2,trong đó có một bội số của 4 ⇒ A chia hết cho 16
A chia hết cho các số 5,7,9,16 đôi một nguyên tố cùng nhau nên A chia hết cho
5.7.9.16 =5040.(đpcm)
chứng min rằng với mọi số nguyên n thì A=\(n^3\left(n^2-7\right)^2-36n\) chia hết cho 105