1, Cho x+y=1. Tính B=\(4.\left(x^3+y^3\right)-6\left(x^2+y^2\right)\)
Giúp e vs ạ!
Cho \(A=\frac{1}{\left(x+y\right)^3}\left(\frac{1}{x^4}-\frac{1}{y^4}\right);B=\frac{2}{\left(x+y\right)^4}\left(\frac{1}{x^3}-\frac{1}{y^3}\right);C=\frac{2}{\left(x+y\right)^5}\left(\frac{1}{x^2}-\frac{1}{y^2}\right)\)
a) Tính B+C
b) Tính A+B+C
P/s: Nhờ mọi người giúp e bài này vs ah! e cần gấp
thanks all:333
giải phương trình :
a) \(x,y\in Z
\)\(\left(y+2\right)x^2+1=y^2\)
b) \(\left(2^x-8\right)^3+\left(4^x+13\right)^3=\left(4^x+2^x+5\right)^3\)
c) \(4x^2+\frac{1}{x^2}+7=8x+\frac{4}{x}\)
mọi người ơi ! giúp e vs ạ ! câu nào cx đk ! đúng e tick cho!
Giải hệ pt
1/\(\left\{{}\begin{matrix}4x\sqrt{y+1}+8x=\left(4x^2-4x-3\right)\sqrt{x+1}\\\dfrac{x}{x+1}+x^2=\left(y+2\right)\sqrt{\left(x+1\right)\left(y+1\right)}\end{matrix}\right.\)
2/\(\left\{{}\begin{matrix}x\sqrt{y^2+6}+y\sqrt{x^2+3}=7xy\\x\sqrt{x^2+3}+y\sqrt{y^2+6}=x^2+y^2+2\end{matrix}\right.\)\(\left\{{}\begin{matrix}x\sqrt{y^2+6}+y\sqrt{x^2+3}=7xy\\x\sqrt{x^2+3}+y\sqrt{y^2+6}=x^2+y^2+2\end{matrix}\right.\)
3/\(\left\{{}\begin{matrix}\left(2x+y-1\right)\left(\sqrt{x+3}+\sqrt{xy}+\sqrt{x}\right)=8\sqrt{x}\\\left(\sqrt{x+3}+\sqrt{xy}\right)^2+xy=2x\left(6-x\right)\end{matrix}\right.\)\(\left\{{}\begin{matrix}\left(2x+y-1\right)\left(\sqrt{x+3}+\sqrt{xy}+\sqrt{x}\right)=8\sqrt{x}\\\left(\sqrt{x+3}+\sqrt{xy}\right)^2+xy=2x\left(6-x\right)\end{matrix}\right.\)
4/\(\left\{{}\begin{matrix}\sqrt{xy+x+2}+\sqrt{x^2+x}-4\sqrt{x}=0\\xy+x^2+2=x\left(\sqrt{xy+2}+3\right)\end{matrix}\right.\)\(\left\{{}\begin{matrix}\sqrt{xy+x+2}+\sqrt{x^2+x}-4\sqrt{x}=0\\xy+x^2+2=x\left(\sqrt{xy+2}+3\right)\end{matrix}\right.\)
m.n giúp e mấy bài này vs ạ!!
\(\frac{1}{\left(x+y\right)^2}\cdot\left(\frac{1}{x^3}+\frac{1}{y^3}\right)+\frac{3}{\left(x+y\right)^{\text{4}}}\cdot\left(\frac{1}{x^2}+\frac{1}{y^2}\right)+\frac{6}{\left(x+y\right)^5}\cdot\left(\frac{1}{x}+\frac{1}{y}\right)\)
Giúp vs cần gấp
Thiếu điều kiện xy = 1; x+y khác 0 nhá bn
Bài này tương tự câu 1 ở đây
Tìm x,y biết
\(\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{3}\right|+\left|y-5\right|+\left|x+\frac{1}{4}\right|=\frac{1}{4}\)
Giúp t vs ạ
phá ngoặc tính BT , nên kết quả sẽ ko ra con số nhận định !!! tui thử thui nha bà !
\(\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{3}\right|+\left|y-5\right|+\left|x+\frac{1}{4}\right|=\frac{1}{4}\)
\(x+\frac{1}{2}+x+\frac{1}{3}+y-5+x+\frac{1}{4}=\frac{1}{4}\)
\(3x+y-\frac{47}{12}=\frac{1}{4}\)
\(3x+y=\frac{25}{6}\)
\(3x=\frac{25}{6}-y\)
\(x=\frac{25-25y}{18}\)
\(\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{3}\right|+\left|y-5\right|+\left|x+\frac{1}{4}\right|=\frac{1}{4}\)
\(x+\frac{1}{2}+x+\frac{1}{3}+y-5+x+\frac{1}{4}=\frac{1}{4}\)
\(3x+y-\frac{47}{12}=\frac{1}{4}\)
\(3x+y=\frac{25}{6}\)
\(y=\frac{25}{6}-3x\)
Vậy \(x=\frac{25-25y}{18}\)
\(y=\frac{25}{6}-3x\)
Ta có:
\(|x+\frac{1}{2}|\ge x+\frac{1}{2}\forall x;|x+\frac{1}{3}|\ge x+\frac{1}{3}\forall x;|y-5|\ge y-5\forall y;|x+\frac{1}{4}|\ge x+\frac{1}{4}\forall x\)
\(\Rightarrow|x+\frac{1}{2}|+|x+\frac{1}{3}|+|y-5|+|x+\frac{1}{4}|\ge x+\frac{1}{2}+x+\frac{1}{3}+y-5+x+\frac{1}{4}\)
Mà \(|x+\frac{1}{2}|+|x+\frac{1}{3}|+|y-5|+|x+\frac{1}{4}|=\frac{1}{4}\)
\(\Rightarrow\frac{1}{4}\ge x+\frac{1}{2}+x+\frac{1}{3}+y-5+x+\frac{1}{4}\)
\(\Rightarrow\frac{1}{4}\ge3x+y-\frac{47}{12}\)
\(\Rightarrow3x+y\le\frac{25}{6}\)
\(\Rightarrow x\le\frac{\frac{25}{6}-y}{3}\)
Thay vào tính y
Làm phiền bạn Quỳnh
Bạn bảo thay vào tính y? Vậy bạn trình bày cho mình phần cuối.
Bạn đang nhầm vấn đề nhé. (2 dòng cuối)
Vd: a + b = 5
<=> a = 5 - b
Thay a vào: 5 - b + b = 5
<=> 0 = 0 ???
Bạn tính ra r bạn đưa lên bth bên trên??? Mình thấy bạn làm vậy thì k thể tìm ra a, b. Có thể mình k hiểu ý bạn. Nếu v bạn trình bày giúp mình phần cuối vì mình không hiểu ý bạn. Thankbạn.
rút gọn
1, \(\left(x+1\right)^3-x^3+3x^2-3x-1\)
2, \(\left(1+x\right)\left(x^2-x+1\right)-\left(x-1\right)\left(x^2+x+1\right)\)
3, \(\left(x-y\right)\left(x^4+x^3y+x^2y^2+xy^3+y^4\right)\)
các bạn giúp mk vs ạ
1) = x^3 + 3x^2 + 3x + 1 - x^3 + 3x^2 - 3x - 1
= 6x^2
2) = x^3 + 1 - ( x^3 - 1 )
= x^3 + 1 - x^3 + 1
= 2
3) dài lắm thôi ko viết ( Bạn áp dụng cái NHÂN ĐA THỨC VỚI ĐA THỨC nhé )
Học tốt ~
giúp mik giải bài hệ pt vs ạ!
1,\(\left\{{}\begin{matrix}x^2+y^2+\dfrac{2xy}{x+y}=1\\\sqrt{x+y}=x^2-y\end{matrix}\right.\)
2,\(\left\{{}\begin{matrix}2x^3+xy^2+x=y^3+4x^2y+2y\\\sqrt{4x^2+x+6}-5\sqrt{1+2y}=1-4y\end{matrix}\right.\)
3,\(\left\{{}\begin{matrix}2x^2+\sqrt{2}x=\left(x+y\right)y+\sqrt{x+y}\\\sqrt{x-1}+xy=\sqrt{y^2+21}\end{matrix}\right.\)
4,\(\left\{{}\begin{matrix}\sqrt{9y^2+\left(2y+3\right)\left(y-x\right)}+4\sqrt{xy}=7x\\\left(2y-1\right)\sqrt{1+x}+\left(2y+1\right)\sqrt{1-x}=2y\end{matrix}\right.\)
1)Điều kiện: \(x + y > 0\)\((1) \Leftrightarrow (x + y)^2 - 2xy + \dfrac{2xy}{x + y} - 1 = 0 \\ \Leftrightarrow (x + y)^3 - 2xy(x + y) + 2xy -(x + y) = 0 \\ \Leftrightarrow (x+y)[(x+y)^2- 1]-2xy(x+y-1)=0 \\ \Leftrightarrow (x+y)(x+y+1)(x+y-1)-2xy(x+y-1)=0 \\ \Leftrightarrow (x + y - 1)[(x+y)(x + y + 1)-2xy] = 0 \\ \Leftrightarrow \left[ \begin{matrix}x + y = 1 \,\, (3) \\ x^2+y^2+x+y=0 \,\, (4) \end{matrix} \right.\)(4) vô nghiệm vì x + y > 0
Thế (3) vào (2) , giải được nghiệm của hệ :\((x =1 ; y = 0)\)và \((x = -2 ; y = 3)\)
\((1)\Leftrightarrow (x-2y)+(2x^3-4x^2y)+(xy^2-2y^3)=0\)\(\Leftrightarrow (x-2y)(1+2x^2+y^2)=0\)
\(\Leftrightarrow x=2y\)(vì \(1+2x^2+y^2>0, \forall x,y\))
Thay vào phương trình (2) giải dễ dàng.
Điều kiện:\(9y^2+(2y+3)(y-x)\geq 0;xy\geq 0;-1\leq x\leq 1\)
Từ phương trình thứ nhất có \(x\geq 0\Rightarrow y\geq 0\)
Xét \(\left\{\begin{matrix} x=0\\ y=0 \end{matrix}\right.\) thỏa mãn hệ
Xét x,y không đồng thời bằng 0, ta có
\(\sqrt{9y^2+(2y+3)(y-x)}-3x+4\sqrt{xy}-4x=0\)
\(\Leftrightarrow \frac{9y^2+(2y+3)(y-x)-9x^2}{\sqrt{9y^2+(2y-3)(y-x)+3x}}+\frac{4(xy-x^2)}{\sqrt{xy}+x}=0\)
\(\Leftrightarrow (y-x)\left [ \frac{11y+9x+3}{\sqrt{11y^2+(2y-3)(y-x)+3x}}+\frac{4x}{\sqrt{xy}+x} \right ]=0\Leftrightarrow y=x\)
Tới đây thay vào phương trình (2) giải dễ dàng.
m.n giúp mik bài này vs ạ!
\(\)\(\left\{{}\begin{matrix}y^3-4y^2+4y=\sqrt{x+1}\left(y^2-5y+4+\sqrt{x+1}\right)\\2\sqrt{x^2-3x+3}+6x-7=y^2\left(x-1\right)^2+\left(y^2-1\right)\sqrt{3x-2}\end{matrix}\right.\left(x,y\in R\right)}\)
a)\(\left\{{}\begin{matrix}2\left|x-6\right|+3\left|y-1\right|=5\\5\left|x-6\right|-4\left|y+1\right|=1\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}2\left|x+y\right|-\left|x-y\right|=9\\3\left|x+y\right|+2\left|x-y\right|+17\end{matrix}\right.\)
c)\(\left\{{}\begin{matrix}4\left|x+y\right|+3\left|x-y\right|=8\\3\left|x+y\right|-5\left|x-y\right|=6\end{matrix}\right.\)
d) \(\left\{{}\begin{matrix}x^2-xy=24\\2x-3y=1\end{matrix}\right.\)
e) \(\left\{{}\begin{matrix}3x-4y+1=0\\xy=3\left(x+y\right)-9\end{matrix}\right.\)
f) \(\left\{{}\begin{matrix}2x+3y=5\\3x^2-y^2+2y=4\end{matrix}\right.\)
a: Đặt |x-6|=a, |y+1|=b
Theo đề, ta có hệ phương trình:
\(\left\{{}\begin{matrix}2a+3b=5\\5a-4b=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=1\end{matrix}\right.\)
=>|x-6|=1 và |y+1|=1
\(\Leftrightarrow\left\{{}\begin{matrix}x\in\left\{7;5\right\}\\y\in\left\{0;-2\right\}\end{matrix}\right.\)
b: Đặt |x+y|=a, |x-y|=b
Theo đề, ta có: \(\left\{{}\begin{matrix}2a-b=19\\3a+2b=17\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{55}{7}\\b=-\dfrac{23}{7}\left(loại\right)\end{matrix}\right.\)
=>HPTVN
c: Đặt |x+y|=a, |x-y|=b
Theo đề ta có: \(\left\{{}\begin{matrix}4a+3b=8\\3a-5b=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=0\end{matrix}\right.\)
=>|x+y|=2 và x=y
=>|2x|=2 và x=y
=>x=y=1 hoặc x=y=-1