Cho hình bình hành ABCD, M là trung điểm AB, N là trung điểm CD.
a. CM tứ giác AMND là hình bình hành.
b. CM Tứ giác AMCN là hình bình hành.
c. CM AC,BD, MN đồng quy.
Cho hình bình hành ABCD, M là trung điểm AB, N là trung điểm CD.
a. CM tứ giác AMND là hình bình hành.
b. CM Tứ giác AMCN là hình bình hành.
c. CM AC,BD, MN đồng quy.
Bài 2 : Cho hình thang cân ABCD ( AB // CD ). Gọi M,N,P ,Q lần lượt là trung điểm Ab,CD,AD,CA. Biết AC vuông góc với BD.
a. CM tứ giác MNPQ là hình bình hành.
b. CM tứ giác MNPQ là hình thoi.
cho hình bình hành ABCD có M và N là trung điểm của Ab và CD. Cm: a)tứ giác AMND là hình bình hành
b)tứ giác BMDN là hình bình hành
c) gọi I là giao điểm của AC và MN. Cm: I là trung điểm của AC; BD; MN đồng qui
Vì tứ giác ABCD là hình bình hành nên:
- AB = CD => AM = CN
- AB // CD => AM //CN
Tứ giác AMCN có cặp cạnh AM, CN song song và bằng nhau nên nó là hình bình hành.
b) chứng minh M, O, N thẳng hàng
* AC và BD là hai đường chéo của hình bình hành ABCD nên chúng cắt nhau tại trung điểm của mỗi đường.
Do đó, O là trung điểm AC
* AC và MN là hai đường chéo của hình bình hành AMCN nên MN phải đi qua trung điểm O của AC
hay M, O, N thẳng hàng.
chuk hoc gioi
Cho hình bình hành ABCD có AB=2BC. Gọi M và N là Trung điểm của AB, CD.
a) chứng minh rằng AMND là hình thoi.
b)chứng minh rằng MBND là hình bình hành.
C) chứng minh rằng AC, BD, MN đồng quy
Bài 2. Cho hình bình hành ABCD. Gọi M, N theo thứ tự là trung điểm AB và CD.
a/ Chứng minh tứ giác AMCN là hình bình hành
b/ AN và CM cắt BD theo thứ tự tại E và F. Chứng minh DE = EF = FB
c/ Tìm điều kiện của hình bình hành ABCD để tứ giác MENF là hình chữ nhật
a: Xét tứ giác AMCN có
AM//CN
AM=CN
Do đó: AMCN là hình bình hành
Cho hình bình hành ABCD có AB = 8 cm,AD = 4 cm.Gọi M, N lần lượt là trung điểm của AB và CD.a/ Chứng minh tứ giác AMCN là hình bình hành. Hỏi tứ giác AMND là hình gì?
b. Gọi I là giao điểm của AN và DM , K là giao điểm của BN và CM . Tứ giác MINK là hình gì
c/ Chứng minh IK\\CD
d/ (Lớp 8A làm thêm câu này).Hình bình hành ABCD cần thêm điều kiện gì thì tứ giác MINK là hình vuông? Khi đó ,diện tích của MINK bằng bao nhiêu?
Cho hình bình hành ABCD có M, N lần lượt là trung điểm của AB, CD. Đường chéo BD cắt CM tại E
a)Chứng minh tứ giác AMCN là hình bình hành.
b)Gọi I là giao điểm của AC và BD, chứng minh ba điểm M, N, I thẳng hàng và BI = 3FI
a: Xét tứ giác AMCN có
AM//CN
AM=CN
=>AMCN là hình bình hành
Xét tứ giác AMND có
AM//ND
AM=ND
AM=AD
=>AMND là hình thoi
b: AMND là hình thoi
=>I là trung điểm chung của AN và MD và AN vuông góc MD tại N
Xét tứ giác MBCN có
MB//CN
MB=CN
MB=BC
=>MBCN là hình thoi
=>MC vuông góc BN tại K và K là trung điểm chung của MC và BN
Xét ΔMDC có
MN là trung tuyến
MN=DC/2
=>ΔMDC vuông tại M
Xét tứ giác MINK có
góc MIN=góc MKN=góc IMK=90 độ
=>MINK là hình chữ nhật
c: Xét ΔMDC có MI/MD=MK/MC
nên IK//DC
Cho hình bình hành ABCD tâm O. Gọi M, N lần lượt là trung điểm của AB và CD.
a) Chứng minh DN = AM và chứng minh AMND là hình bình hành.
b) Chứng minh MBND là hình bình hành.
c) Chứng minh AN // CM và AN = CM.
d) Chứng minh M, O và N thẳng hàng.
e) Đường chéo BD cắt AN ở I và CM ở Q. Chứng minh BQ = QI = ID.
Cho hình bình hành ABCD tâm O. Gọi M, N lần lượt là trung điểm của AB và CD.
a) Chứng minh DN = AM và chứng minh AMND là hình bình hành.
b) Chứng minh MBND là hình bình hành.
c) Chứng minh AN // CM và AN = CM.
d) Chứng minh M, O và N thẳng hàng.
e) Đường chéo BD cắt AN ở I và CM ở Q. Chứng minh BQ = QI = ID.
a: Xét tứ giác AMND có
AM//ND
AM=ND
Do đó: AMND là hình bình hành
b: Xét tứ giác MBND có
MB//ND
MB=ND
Do đó: MBND là hình bình hành